ANTICYCLOTOMIC DIAGONAL CLASSES AND BEILINSON-FLACH
ELEMENTS
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ABSTRACT. We present a comparison between the anticyclotomic Euler system of diagonal
cycles associated with the convolution of two modular forms and the cyclotomic Beilinson—
Flach Euler system. This extends the seminal work of Bertolini, Darmon, and Venerucci, who
established a link between (anticyclotomic) Heegner points and the Beilinson—Kato system.
Our approach hinges on a detailed analysis of p-adic L-functions and Perrin-Riou maps and
exploits the Eisenstein degeneration of diagonal cycles along Hida families, working with a
CM family which specializes to an irregular Eisenstein series in weight one. We use these
results to derive some arithmetic applications.
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1. INTRODUCTION

The recent work of Bertolini, Darmon, and Venerucci [BDV22] establishes a conjecture
relating Heegner cycles to Beilinson—Kato elements, linking both objects to p-adic families
of Beilinson—Flach elements in the higher Chow groups of products of two modular curves.
The comparison between Heegner points and Beilinson—Kato elements had previously been
investigated by Biiylikkboduk [Buyl6] and Venerucci [Venl6|, within the framework of the
exceptional zero conjectures. In this work, we extend the results of [BDV22] by relating
Beilinson—Flach classes to the diagonal cycles studied in [BSV22b] and [DR22], which in turn
can be interpreted in terms of the anticyclotomic classes constructed in [ACR23b], [ACR23al,
and [CD23].

This work may also be interpreted in the context of the recent developments of Loefler
and the third author [LR24], where they study the Eisenstein degeneration of Euler systems,
i.e. Euler systems obtained from critical Eisenstein series. Our setting, however, differs in a
significant way, since it involves as input a (non-cohomological) weight-one Eisenstein series.
We will return to this point throughout the text.

Following [BDP22], the central feature in the setting of irregular weight-one modular forms
attached to Dirichlet characters (x1, x2) with x1(p) = x2(p) is the existence of three (ordinary)
families passing through it: the families of Eisenstein series E(x1, x2) and E(x2, x1), as well
as a third Hida family that is generically cuspidal. The key idea, both in this note and in
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earlier related works, is the introduction of an auxiliary modular form that can be suitably
deformed along a Hida or Coleman family to produce the required Galois representation. In
this sense, the present work may be viewed as an instance of CM degeneration, while the work
of Loefller and the third author provides an example of Eisenstein degeneration.

1.1. The set-up. Let p be an odd prime and fix once and for all an embedding ¢, : Q- @p
and an embedding ¢ : Q < C. The latter determines a choice of complex conjugation in Gg
which will be denoted by c.

Let K/Q be an imaginary quadratic field in which p splits and let ex be the quadratic
character attached to it. Let f be the CM Hida family introduced in which specializes in
weight one to the irregular weight-one Eisenstein series f = Fisj(ex). Let (g, h) be a pair of
Hida families of coprime tame levels (N, Nj,) and characters (xg, xn) such that xgxn = exw?”
for some r € Z. We also assume that g and h are residually irreducible and p-distinguished.
Let g = g,, and h = hZ  be good crystalline specializations of g and h of weights lp > 2 and
mo > 1, respectively. We assume that p { cond(h). Set ¢ = (lp + mo — 1) /2.

In we introduce our notations regarding Galois representations attached to families of
modular forms. In particular, attached to g (and similarly for f and h) there is a locally-free
rank-two module Vg, defined over a finite flat extension of A = Zy[[1 + pZ,]] and equipped
with a continuous action of the absolute Galois group Gg.

1.2. Euler systems and p-adic L-functions. We now present the two cohomology class
that can naturally be attached to the triple (f,g,h). Firstly, the diagonal cycle class, which
may be understood as an anticyclotomic Euler system as discussed in [ACR23b]; secondly,
the cyclotomic system of Beilinson—Flach, as developed e.g. in [KLZ17].

(A) The work of Bertolini-Seveso—Venerucci [BSV22b] and Darmon—Rotger [DR22] pro-
vides us with a diagonal cycle class

K(fv g, h) € Héal(Q7Vf®Vg®Vh(2 - t)),

where 2t = k + 14 m. This class is constructed via the p-adic variation of diagonal
cycles, so it may be understood as a geometric object. By specilizing the first variable,
it yields a class x(f,g,h) € H.,(Q,V; @ Vg&Vy(2 — t1)), where 2t = 1 + 1+ m.

(B) The work of Kings—Loeffler—Zerbes [KLZ17] provides us with a (cyclotomic) Beilinson—
Flach class

figh € Hy(Q, Vg@Vi (2 — t1))

attached to the pair (g,h), with the conventions that we later recall. Similarly, we
may consider a Beilinson-Flach class kg hge, attached to the families (g,h ® k),
where h ® e denotes the twist of h by the quadratic character .

Note, however, that the construction of the Beilinson—Flach classes proceeds in an ostensibly
different way, since it involves working with modular units, which are absent in the theory
of diagonal cycles. Roughly speaking, the construction of diagonal cycles proceeds in purely
geometric terms, so the construction is amenable to be generalized to other settings where
there are no modular units (e.g. Shimura curves) and Beilinson-Flach classes are not available.

The main result of this note is a result connecting both classes. However, to ensure that
they live in the same space, one first defines a Beilinson—Flach class

BF(f7g7 h) € Hl(@) Vf ®Vg®vh(2 - tl))>

obtained as a suitable weighted combination of kg1 and Kgnge,. The intuition for that
comes from the observation that Vi @ Vg&@Vy(2 — t1) decomposes as the direct sum of the
Galois representations Vg@Vp(2 — t1) and Vg®@Vy(2 — t1)(ex), and hence one can naturally
construct a cohomology class by gluing the Euler systems for each of the two pieces.
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The key point for developing a comparison of Euler systems comes through the theory of
p-adic L-functions. More precisely, the arithmetic of the Beilinson—Flach system is dictated
by the Hida—Rankin p-adic L-functions, which interpolate special values of the complex L-
function L(g ® h,s). Similarly, diagonal cycles are related, via explicit reciprocity laws, with
the triple product p-adic L-function constructed by Hsieh [Hsi21], and later extended by
Andreatta—Tovita [AI21] to the non-ordinary case.

The main result of this note may be interpreted as a comparison between a cyclotomic and
an anticyclotomic cohomology class attached to the representation V; ® Vg®Vn(2 — t1). As
a piece of notation, we put V}gh =V @ Vg@Vy(2 — t1) and Vgh = Vg&®Vp(2 — t1). Before
stating the theorem, we introduce the following objects; their precise definitions are recalled
in the main body of the article.

- The Selmer group Héu +(Q,V}gh), corresponding to a certain local condition at p.

This is defined in and it is a module over Agp = Ag®Ap, where Ag (resp. Ap) is
the Iwasawa algebra over which the Hida family g (resp. h) is defined.

- The Selmer group Hgal(Q,V}gh), corresponding to the balanced local condition at p.

- The Atkin-Lehner pseudo-eigenvalue Ay, (g).

- The p-adic period €., depending on the choice of the isomorphism ~ of .

- The triple product p-adic L-function £,?(f, g, h), interpolating central values of the
corresponding triple product complex L-functions along the g-unbalanced region. In
this case, -2,7(f, g, h) corresponds to specializing f at f.

In the course of developing the theory and proving the results of this work, we impose a
non-vanishing assumption on .Z,?(f, g, h); see Assumption

Theorem 1.1. Assume that Héu+((@,V}gh) is a torsion-free Agn-module of rank 1 and
that the p-adic L-function £,9(f,g,h) is not identically zero. Then BF(f,g,h) belongs to

Héal (Qv Vngh) and

)\Ng(g) : BF(fvgvh) = Qf,’Y : gpg(.ﬂgvh) : K(fvgah)'

Furthermore, the result may be also understood in the framework of the comparison between
different instances of Euler systems, developed e.g. in [LR24], but where one considers instead
CM families passing through a weight-one Eisenstein series, while in loc. cit. the key input
was the use of families passing through the critical p-stabilization of an Eisenstein series of
weight at least two.

Remark 1.2. Contrary to the situation in [BDV22], where Beilinson-Kato classes and Beilinson—
Flach elements were compared in Iwasawa cohomology, we are not working at that level here.
In our case, such a comparison is not possible, since the main result should be viewed as re-
lating a cyclotomic Euler system to an anticyclotomic one. Therefore, we restrict our analysis
to the bottom layers.

Remark 1.3. The slogan of this result may be summarized under the sentence Heegner points
are to Kato classes what anticyclotomic diagonal cycles are to Beilinson—Flach classes. Un-
fortunately, this setting remains much more mysterious in many instances, like the lack of a
proof of the Iwasawa main conjecture (only one divisibility is known).

The proof proceeds in three main steps.

(a) Compare the triple product p-adic L-function .£,7(f, g, h) with the Hida-Rankin p-
adic L-functions attached to the pairs (g, h) and (g,h ® ek).

(b) Define the weighted Beilinson—Flach class and show that it satisfies the appropriate
local condition. This requires a careful analysis of the structure of the corresponding
Selmer groups.



4 RAUL ALONSO, LOIS OMIL-PAZOS AND OSCAR RIVERO

(c) Relate the two cohomology classes via the explicit reciprocity laws.

As a consequence of this result in families, we also obtain a comparison upon specializing
g and h; see for details. Another corollary concerns a factorization of a certain big
logarithm, which can be applied to the Beilinson—Flach class. To state it, we introduce the
following objects:

- The triple product p-adic L-function of Hsieh [Hsi21] and [AI21], denoted .pr (f,g,h),
attached to the triple (f, g, h), where f is the CM family considered above. Its spe-

cialization at weight one in the first variable is denoted by %,/ (f, g, h).
- The big-logarithm map Lngg®wh7 introduced in Def.

Corollary 1.4. Assume that HéUJr(Q,VJ}gh) is a torsion-free Agn-module of rank 1 and
that the p-adic L-function £,9(f,g,h) is not identically zero. Then we have the following

factorization of the image of the Beilinson—Flach class under the Perrin-Riou map Logu, @uwn, *

Qf,“/ ' gpg(fv g, h) : gpf(fv g, h) = )‘Ng (g) : LOgUJg®Wh (BF(f7 g, h))

1.3. Exceptional zeros. There is a case which is especially interesting from the point of
view of arithmetic applications, which corresponds to the following assumption.

Assumption 1.5. With the previous notations, it holds that
lg+mg—3
agﬁh =P S

Since g and h are p-ordinary and p { cond(h), it follows from this assumption together with
the Ramanujan—Petersson conjecture that (lo,mo) = (2,1) and that g has conductor Ngyp.
Note that this situation includes in particular the case where g is the modular form attached
to an elliptic curve over Q with multiplicative reduction at p.

Hence, we encounter an arithmetic situation that is particularly intriguing, as two of the
Euler factors associated with the p-adic L-function vanish. In this setting, improved p-adic
L-functions are available, both in the Hida—Rankin case and for the triple product of modular
forms. However, the vanishing of these two Euler factors occurs for different reasons: one is
introduced by the big logarithm map, while the other arises from the interpolation in families
of Beilinson—Flach classes and diagonal cycles. To complete the picture, we therefore need to
(a) construct improved big logarithm maps, and (b) construct improved cohomology classes.
At this point, we rely on a standard conjecture in the theory of exceptional zeros to guarantee
the existence of the improved Beilinson—Flach class in this setting, while the improved diagonal
cycle class has already been constructed in [BSV22b].

As a piece of notation for the next proposition, we use the following terminology.

The line C corresponds to the points in the pair of families with weights of the form
(1,1 —1); see §6| for the precise definition.

The /t\riple—product improved p-adic L-function, introduced in Theorem [6.4] is denoted
by %, (f.g.h).

The improved diagonal cycle of [BSV22b] is denoted by %(f, g, h).

- The (still conjectural) improved Beilinson—Flach class is denoted by ]§’\F( f.g,h).

Theorem 1.6. Assume that H' (Q,V}ghk’) is a torsion-free Oc-module, HéUJr(Q,X}gh) is a
torsion-free Agn-module of rank 1 and £,9(f,g,h) is not identically zero. Then BF(f, g, h)
belongs to the Selmer group Hgal(Q,V}ghk) and

Q%) (f,8,h) - #(f,8h) = Ay, (&) - BF(f,g,h).

The proof follows the same ideas as in the non-exceptional case, but requires certain modi-
fications to account for the improved setting. In particular, one needs to work with improved
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big logarithms, since in this situation the Euler factor in the numerator of the Perrin-Riou
map vanishes at the point corresponding to the pair (g, h).

1.4. Related works. This project, together with [BDV22], provides an example of how two
distinct types of Euler systems can be related through a CM degeneration technique. We now
highlight its connections with other analogous phenomenas:

(1) Critical Eisenstein series. In [LR24] and [PR25], the authors study Euler systems
in families where one of the modular forms passes through a point corresponding to the
critical-slope p-stabilization of an Eisenstein series. In these cases, the specialization
of the associated Galois representation admits a projection onto a one-dimensional
quotient, allowing for a direct comparison with a smaller Euler system.

(2) Irregular Euler systems. The degeneration technique used in this work, inspired
by [BSV22b|, considers a CM family intersecting an irregular weight-one Eisenstein
series. This can be viewed as a CM degeneration, in which the Euler system in families
decomposes into a sum of two distinct Euler systems, each associated with a different
component of the CM representation. In both situations, the key idea is the same: to
exploit a cuspidal Hida or Coleman family which, at a certain point, specializes to an
Eisenstein series.

(3) (Eisenstein) congruences among modular forms. Instead of working inside a
family, one may also consider an Euler system attached to a cuspidal modular form
that satisfies a congruence relation with an Eisenstein series. In this setting, similar
connections to those described in (1) can be established.
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2. PRELIMINARIES

Along this section we recall the main properties about the Galois representations attached
to modular forms and families which are needed along this work. Further, we state the
assumptions which are needed to guarantee the étaleness of the Coleman—Mazur—Buzzard
eigencurve around a classical point, following the seminal works of [BD16] and [BDP22]. This
has a special relevance in our study, since we are going to consider a family passing through
an irregular weight-one Eisenstein series.

Let p > 2 be a prime and fix once and for all an embedding ¢, : Q- @p and an embedding
t: Q — C. The latter determines a choice of complex conjugation in Gg which will be
denoted by c.

[e.9]

2.1. Deligne representations. Let { = > ; a,(£)¢" € Si(Ng, x¢) be a normalized new-
form of weight k& > 2, level N¢, and nebentypus x¢. Let L be a finite extension of Q,
containing the Fourier coefficients of { (under the embedding ¢, fixed above) and let O be the
ring of integers of L. By work of Eichler—Shimura and Deligne, there is a two-dimensional
representation

pe - GQ — GLL(Vg) ~ GLQ(L)
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unramified outside p/N¢ and characterized by the property

trace pe(Frq) = aq(&)
for all primes g t pNg¢, where Fr, denotes an arithmetic Frobenius element at q. Let Y7 (Ng)
be the open modular curve over Q parameterizing pairs (A, P) consisting of an elliptic curve
A and a point P € A of order Ng. Let £, _o be the p-adic sheaf over Y;(N¢) introduced in
[BSV22bl, §2.3]. We shall work with the geometric realization of V; arising as the maximal
quotient of
He(Y1(Ne)gs Z2(1)) ©z, L
on which the dual Hecke operators T and (d)’ act as multiplication by a4(§) and x¢(d) for all
primes ¢ { N¢ and all d € (Z/N¢Z)*.
If £ is p-ordinary, then we have a filtration
0=V = Ve= Vo =0

of G,-representations, where Vgi are 1-dimensional and Vg_ is unramified with Fr, acting as
multiplication by the unit root of the p-th Hecke polynomial of &.

2.2. Hida families and big Galois representations. In this subsection, we recall the
fundamental concepts and main notations related to Hida families that will appear in this
work.

Let A = Z,[[1 + pZy)]. Given an integer r and a finite-order character € : 1 + pZ, — @; ,

we define the character v, : 1+ pZ, — @; by vre(z) = z"€(z). This character extends
to a ring homomorphism P.. : A — @p, and we will use the same notation P,.. to denote
the corresponding point in Spec(A)(Q,). Points in Spec(A)(Q,) of this form will be called
arithmetic points, and the set of such points will be denoted by W. Given a finite flat extension
R of A, we say that a point z € Spec(R)(Q,) is arithmetic if it lies above an arithmetic point
P, € Spec(A)(Q,). In this case, we refer to k, = r + 2 as the weight of .

Let N be a positive integer coprime to p and let x : (Z/NpZ)* — Q" be a Dirichlet
character. A Hida family of tame level N and character y is a formal g-expansion

€= an(€)q" € Aellq])
n>1

with coefficients in a normal domain A finite flat over A such that for every arithmetic
point x € Spec(Ag)(@p) lying above some P, . with r > 0 the corresponding specialization &,
is a p-ordinary eigenform in S,;2(Np®, xew™), where s = max{1, ord,(cond(e)}. We define
O¢ = A¢[1/p]. We set Ug = Spec(A¢) and Ug = Spec(O¢) and we denote by kg : Ug — Spec(A)
the homomorphism corresponding to the inclusion A — Ag. We denote by W the set of
arithmetic points in Ug (@p). We say that an arithmetic point z € Wg of weight k; > 1 is
classical if the corresponding specialization £, is a classical modular form (which is always
the case if k, > 2). In this case &, is a p-stabilized newform. If &, is the p-stabilization of a
newform of level N, we denote the latter by £7. Otherwise, we write §; = ;. We note that,
if k, > 2, then &, is always p-old.

Attached to a Hida family £ there is a locally-free rank-two A¢-module V¢ equipped with
a continuous action of Gg such that for any arithmetic point x € Wg of weight k, > 2 the
specialization Ve @, » @p recovers the Gg-representation Veo attached to £7. We call Vg the
big Galois representation attached to §. As a Gg,-representation, V¢ admits a filtration

+ —
0=V =2Ve =V, =0,
where VZ is a free rank-one Ag-module, VE_ is a locally-free rank-one A¢g-module, and the Gg,-
action on V, is unramified with Fr, acting as multiplication by ap(§). For any arithmetic
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point € We of weight k, > 2, the corresponding specialization of the exact sequence above
recovers the filtration

0= Vet = Veg = Vo = 0.

Moreover, if £ is residually irreducible and p-distinguished, then the A¢-modules Vg and Vg
are free.

2.3. The Coleman—Mazur eigencurve. Let £ be a Hida family of tame level Ng and
character x¢. Let © € We be a classical point of weight k, > 1. We say that x is a crystalline
point if &, has nebentypus of conductor coprime to p. We say that z is a good point if in
addition any of the following conditions holds:
(a) ky > 2;
(b) k; =1 and &, is a p-stabilisation of a classical p-regular cuspidal weight-one newform
of level N¢ without real multiplication by a real quadratic field /' where the prime p
splits;
(¢) k, = 1 and &, is the p-stabilisation of a p-irregular weight-one Eisenstein series of
conductor Ng.

Note that these conditions imply in particular that &, is an étale point of the cuspidal
Coleman-Mazur-Buzzard p-adic eigencurve of tame level Nge. When (a) holds, this follows
from the work of Hida and Coleman (see, e.g. [Bell2]); when (b) holds, this is proved in
[BD16]; when (c) holds, it is proved in [BDP22].

If x € We is a good point of weight 1, then it follows from [BDV22, Prop. 2.2] that
Ve®pew @p recovers the Deligne—Serre Artin representation Veo attached to &7. In particular,
this allows us to obtain a filtration

+ —
0= Veo = Veg = Vo = 0
for Vgo as a Gg,-representation by specializing the filtration
+ —
0=Vg 2 Ve—=Ve =0
at the point x.

2.4. Irregular weight-one Eisenstein series. Let K be an imaginary quadratic field of
discriminant —dg in which p splits. Write pOg = pp, with p the prime of Ok corresponding
to the fixed embedding ¢,: Q — @p. Let ex stand for the quadratic character attached to
the imaginary quadratic field K. In particular, for any prime ¢ { di, we have ex(q) = +1 if
g splits in K and ex(q) = —1 if ¢ is inert in K.

Definition 2.1. The weight-one Eisenstein series of character ek is the weight-one modular
form given by the Fourier expansion

. 1 n
ElSl(EK): iL(EK’O)—i_Zq ZEK(d) EMl(—dK,EK).
n>1  djn
It has level I'1(—dk) and character e.

We will write f = Eisj(ex). Note that the eigenform f is a p-irregular modular form, i.e.,
its p-th Hecke polynomial, given by X2 — 2X + 1, has a double root. Define

fo=f(q) — f(¢") € Mi(—pdk,eK)

as the unique p-stabilisation of f.
A result of Betina, Dimitrov and Pozzi [Pozl9|, [BDP22| extending the prior work of
Bellaiche and Dimitrov [BD16], establishes the following.
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Proposition 2.2. The eigenform f, is an étale point of the cuspidal Coleman—Mazur eigen-
curve. In particular, there exists a unique (up to conjugation) Hida family £ of tame level —dg
and tame character x; = €k passing through fo. Moreover, the Hida family £ has complex
multiplication by K.

Proof. This is [BDP22, Thm. A]. O

Remark 2.3. Similar results exist if we consider instead the Eisenstein series Eisi(x1, x2¢K),
with y1 and yg Dirichlet characters of prime-to-p conductors Ny and Ny with x1(p) = x2(p).
In that case, one would need to define f,, as

fa = Eis1(ex)(q) — x1(p) Eis1(ex)(¢”) € M1(—pdx N1 N2, exx1X2)-

Let K& be the Z,-extension of K unramified away from p. Let I'y = Gal (K5 /K) and let
Af = O[[T,]]. Let reck : Aj — G2 denote the (arithmetically normalized) global reciprocity
map and let ©, denote the composition of reci with the canonical projection Gi}g — I'y. Let
reck p pr — G%Pp denote the (arithmetically normalized) local reciprocity map. We identify
Gk, with the decomposition group above p determined by our fixed embedding Q— @p, and
thus we regard G, as a subgroup of G'x. Thus we obtain a homomorphism G‘}‘Pp — G%P — Iy
(which is surjective if p t hx) and we define 6, : K — I', as the composition of recg , with
this homomorphism. The character 1+ pZ, — A defined by z — 2716,(z) extends to an
embedding A — Ag, whereby Af becomes a finite flat extension of A. For each non-zero
fractional ideal a of K, let x4 € AIXQ s be a finite idele with ord, (2q,,) = ord,(a) at each finite
place w with ord,(a) # 0 and x4, = 1 for all other places w. Then, the Hida family f is
given by

F= > Oplea)d™ e € Agllg]
aCOk, pfa
The specialization of f at the point xg € Wt corresponding to the trivial character of T
recovers the modular form f,.
Let ¢ : Gg — I'y denote the canonical projection. Then, we have the following result.

Proposition 2.4. The A¢[Ggl-modules V¢ and Ind% A¢ (@) are isomorphic.

Proof. This is [BSTW24, Thm. 1.21]. O
Fix once and for all an isomorphism of A¢[GgJ-modules

(2.1) v Ve~ Ind% .

This isomorphism is not canonical, so the next decompositions will depend on this choice.
Since p splits in K, the restrictions of Ind% ¢ to Gk and Gg, decompose as the direct sum
of ¢ and its complex conjugate ¢°. Note that the character <,oc|(;@]D is unramified and maps
the arithmetic Frobenius Fr;, to the p-th Fourier coefficient a,(f) = O(z5) of f. Therefore, the
restriction of V¢ to Gg, decomposes

Ve=ViaVy, with (V) = As(play,) and v(Vy) = Ar(¢°|aq, )-
Recall that the specialization V¢ ®a, 4, L recovers the Deligne-Serre Artin representation
Vy. Setting, as before, VfjE = fo ®Ag,zo Ly, we have a decomposition Vi = Vf+ @ Vf_ of
Gq,-representations. Also, specializing the isomorphism v at xg, we obtain an isomorphism
v: Vi = L) & Liek)

of L[Gg]-modules.

Let v+ and v~ be the canonical Ag-bases of the Gi-submodules Ag(¢) and Ag(¢€) of
Ind% At (¢p), respectively. The maps v*: Gg — Ag are determined by (v*(1),v7(c)) = (1,0)
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and (v~ (1),v7(¢)) = (0,1), where ¢ denotes our fixed choice of complex conjugation. Set
v?ﬁ =~ 1(v?) in V;t, let v}t in Vfi be their specializations at z¢ and define

vf1 = v; —i—v;, Vfer = v;[ — UJT.

Note that ¢ exchanges the vectors v+ and v~, and therefore the elements vy(vy 1) and y(vse,)
give bases of the Gg-representations L(1) and L(ek ), respectively. These choices of vectors
will be used later on.

3. p-ADIC L-FUNCTIONS

Let (g, h) be a pair of cuspidal Hida families and let f be the Hida family introduced in
This work relies on the comparison between the Hida-Rankin p-adic L-function L,(g,h) and
the triple product p-adic L-function L,(f, g, h). In this section we introduce these objects.

3.1. Hida—Rankin p-adic L-function. Here we introduce the three-variable Hida—Rankin
p-adic L-function. We follow mainly the exposition in [KLZI17].

Let (g, h) be a pair of cuspidal Hida families of tame levels (Ng, N},) and characters (xg, Xn)-
We make the following assumption.

Assumption 3.1. gcd(Ny, Np) = 1.

Put Wghs = Wg X Wi x W. For ¢ € {g, h}, let W denote the subset of crystalline points
in Wy. Also, fix an integer sg and define

W? ={Ps1 e W|s=sy (modp—1)}.
In an abuse of notation, a point Ps; € WW° might be denoted simply by s.

Let (yo,20) € Wg x Wy, be a good crystalline point with corresponding weights (lo, mo)
satisfying lp > 2, mg > 1. We define

W;l ={y € Wy | ky > 2};
W= {zeWg | k. > 2} U{z}.

Note that, for ¢ € {g,h}, the specialization of ¢ at a point in W;l is a classical p-stabilized
newform. For each z € Wg)l, we define ag, = ap(¢s) and By, = X¢, (p)pkf_loz;:. Note that,
if k; > 2, then oy, is the unit root of the p-th Hecke polynomial of ¢g.

Let Wghs = Wg x WEl x W° and let Wghs denote the subset of points (y,z,s) € Wghs
of weights (ky, k;) = (I, m) satisfying m < s < [. This is the range of interpolation for the
three-variable Rankin p-adic L-function L,(g,h,s) introduced below. Similarly, we define
Wghs as the subset of points (y, 2, s) € Wghs of weights (ky, k.) = (I, m) satisfying [ < s < m.
Note that both Wghs and Wghs exclude points with [ = m. Set Agps = Ag®oAh®ZpA and

Oghs = Angs[1/p]. Let Iz C Ag be the congruence ideal of g and let I, C Ay, be the congruence
ideal of h.

Hida constructed in [Hid85] and [Hid88| a three-variable p-adic Rankin L-function L,(g,h,s)
in g 1(’)ghs interpolating the algebraic parts of the critical values L(gg‘j, h, s) for every triple of
critical points (y, z, ) in Wghs. The following formulation is taken from [KLZ17, Thm. 7.7.2].

Theorem 3.2. (Hida) There ezists a p-adic L-function
Lp(ga h, S) € Ig_loghs

such that for every (y,z,s) € Wéh of weights (ky, k.) = (I,m) with p { cond(g,) - cond(h.) we
have

E(y,z,s) I'(s)['(s—m+1)
Eo(y)&r(y) m2s—mH(—i)l=m22sHi=m{gs, go)

Lp(g,h, s)(y,2,5) = X L(g27h273>
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where (g;,g,) is the Petersson norm as normalized in [KLZ17] and the Euler factors are

defined by

Sly) = 1-x,'(n)Bg,p""
E(y) = 1—xg(p)ag 72,
(3.1) E(y,z,8) = (1 — Of::h) (1 — OZ:_BL) (1 - 6g;§hz ) (1 - Bg;fhz)

Remark 3.3. Similarly, there is a p-adic L-function L,(h,g,s) € I,/ lOghS interpolating the
Rankin—Selberg L-values in the region Wghs. Note that the p-adic L-functions L,(g,h,s) and
Ly(h,g,s) are different.

This construction was later generalized by Urban to the case where the modular forms are
not necessarily ordinary [Urbl14], [AI21, App.], using nearly overconvergent modular forms

of finite order and their spectral theory. In this case, the interpolation property does not
completely determine the p-adic L-function, and one needs to impose further conditions.

3.2. Triple product p-adic L-function. Let (f,g,h) be a triple of Hida families of tame
levels (N, Ng, Ni,) and characters (x¢, Xg, Xn)- In this section, we introduce the three-variable
p-adic L-function interpolating the central values of the triple product L-functions associated
with classical specializations of (f, g, h) in the g-dominant region.

Put Wegh == W X Wg x Wh. For ¢ € {f, g, h}, let Wg) denote the subset of crystalline
points in Wy and put Wfogh = Wg x Wg x Wy € Wegn. Let wo = (20, Y0, 20) € Wﬁgh be a good
crystalline point with corresponding weights (kg, lo, mo) satisfying ko + lp + mo =0 (mod 2),
ko,mo > 1, lp > 2. Put (f,g,h) = (7, &y,, h3,). Note that (f,g,h) is a triple of p-stabilized

€T
newforms with characters (xr, Xg, Xn) = (Xgp), ngp), XE)), where x®) stands for the prime-to-p

part of the character x.
We make the following assumption.

Assumption 3.4.
(1) ged(Ny, Ng, Np) is square-free;

(2) Xfxgxn =1;
(3) the residual representation p, is absolutely irreducible and p-distinguished.

Put Vig, == Vy @1 Vy ®1 Vi, Then Vygp, is a Gg-representation of dimension 8 over L.
Moreover, putting co := (ko + lo + mo — 2)/2, the twisted representation Vngh = Vign(1l —co)
is Kummer self-dual, i.e., (V}gh)v o~ V]:rgh(l).

We now add the following assumption.

Assumption 3.5. For all prime ¢ | NNy Ny, EE(Vngh) = +1.
We define
W' = {z e Wg | ky > 2 and ky = ko (mod 2(p — 1))} U {zo};
Wg ={y € Wg | ky > 2 and ky =lp (mod 2(p — 1))};
Wil i={zeW} | k. > 2 and k., = mgo (mod2(p — 1))} U {2}
Note that, for ¢ € {f, g, h}, the specialization of ¢ at a point in Wg is a classical p-stabilized

newform. For each x € W;l, we define oy, = a,y(¢.) and By, = Xo, (p)pkw_loz;j. Note that,
if k; > 2, then oy, is the unit root of the p-th Hecke polynomial of ¢g.

~, cl ~ ~ . . ..
Put Wdh =Wt x Wg X Wﬁl. This set admits the natural partition

fg
1 _yf g h bal
ngh = ngh L ngh L ngh L ngah,
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where
. nggh denotes the set of points (z,y,2) € Wféh of weights (k,1,m) such that | > k+m;

° ngh (resp. Wf}}gh) is defined similarly, replacing the role of g by f (resp. h);

° Fgaﬁ is the set of balanced triples, consisting of points (z,y,z) € chglh of weights
(k,l,m) such that each of the weights is strictly smaller than the sum of the other
two.

Set Afgh = As®0Ag®0 AR and Oggh = Aggn[1/p]. Let Iz C Ag be the congruence ideal of g.
In [DR14], Darmon and Rotger constructed a triple product p-adic L-function interpolating

the square roots of the central values of the triple product L-functions associated with classical

specializations of (f, g, h) in Wi?gh' The precise interpolation formula given below is due to

Hsieh [Hsi21]
Theorem 3.6. (Darmon—Rotger, Hsieh) There exists a p-adic L-function
gpg(f7 g, h) € Ig_lofgh

such that for every (x,y,z) € nggh of weights (k,1,m) with p{ cond(f;) - cond(gy) - cond(h.)
we have

gpg(fv g, h)Z(xa Y, Z) = a(klo,il’onlg) : 62(1" Y, Z) : L(f;’ g;, h,(;v C)a
(g5, 85)
where
k+l+m—

(1) c = %2,
(2) a(k:,l,m) _ (27.”')—2(1—2) . k+l—|ém—4 . —k+l3—m—2)! . (k+l—2m—2>! . (—k—i—2l—m>!7
(3) e(z,y,2) = E(x,y, 2)/Eo(x)E1(x) with

Sy) = 1-x;' (B,

Ei(y) = 1—xgP)ag P2,

_ —k+l—m _ —k+l—m
E@y.2) = (1-xo@orog anp™F) x (1- xyp)ar, o5, bup=F)

—k+l—m —k+l—m

><(1 — Xg(P)Br, g, On.p” 2 ) X (1 — Xg(P)Br. g, Bn.p ™ 2 )

Remark 3.7. To be precise, each choice of test vectors (f",g,fl) for (f,g,h) determines a
p-adic L-function 2,9 (f‘ .8, fl), and Hsieh shows that there exists an optimal choice of test
vectors (f‘*, g*,fl*) for which the p-adic L-function .£)7 (f'*, g*, fl*), which we denote simply
by £,(f,g,h), satisfies the precise interpolation formula given above. Using these same
test vectors, one can also define p-adic L-functions pr(f, g,h) and th(f, g, h) interpolating
square roots of classical L-values in the regions Wffgh and Wth? respectively. Note that our
choice of test vectors might not be optimal for these regions, so Epf (f,g,h) and fph (f,g,h)
might not precisely satisfy an interpolation formula analogous to the one above. However,
if gcd(Ng, Ni) = 1, g and h are residually irreducible and p-distinguished, and f is the CM
Hida family introduced in §2.4] which is the situation that we will consider, then it follows
from [Hsi21] that one can choose test vectors which are optimal for both nggh and ngh.

4. FAMILIES OF COHOMOLOGY CLASSES

In this section we introduce the two kinds of cohomology classes that are involved in our
comparison, together with the corresponding reciprocity laws connecting them with the p-adic
L-functions introduced in the previous section.

The cohomology classes introduced in this section are the following:
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(a) the Beilinson—Flach classes attached to a pair of Hida families (g, h) constructed in
[KLZ17;

(b) the diagonal cycles attached to a triple of Hida families (f, g, h) constructed in [BSV22h)]
and [DR22].

4.1. Beilinson—Flach classes. We use the notations and assumptions introduced in §3.1

In particular, (g, h) is a pair of Hida families of tame levels (Ny, N},) and characters (xg, Xn)-
We also make the following assumption.

Assumption 4.1. The Hida families g and h are residually irreducible and p-distinguished.

Let s : ZY — A* be the character defined by z — w®(2)[(2)], where (z) = w™!(z)z and
[(z)] denotes the corresponding group-like element. Note that the specialization of s at a
point Ps1 € W° is the character z — 2°. We denote by 1 : Z; — Ag the weight character
of g, defined by z — xg(2)2%[(2)]a,. Note that the specialization of 1 at a crystalline point
y € Wy of weight [ is the character z — 2!, Similarly, we denote by m : Zy — A[ the weight
character of h, defined by z — xn,(2)22[(2)]a,-

Given specializations g, and h,, we denote by ngy and wyp, the associated differentials
as defined in [KLZI17, §3]. As shown in [KLZI7, §10], one can define objects ng and wp
interpolating these differentials.

We first introduce a Perrin-Riou logarithm that will be used for the formulation of an
explicit reciprocity law.

Proposition 4.2. There exists a homomorphism of Agns-modules

Lgljs : Hl(ngVg(gV;:@A(l — S)) N Ig_l-[_loghs,

where I is the augmentation ideal of A, such that for every point (y,z,s) € Wghs of weights
(ky, k) = (I, m) with ag, By, # p° the specialization of E;ﬁ; at (y, z,8) is the homomorphism

Lo (y,2,5) : HY(Q)p, Ve, ® V};’;(l —s)) = C,

ghs
given by
-1,-1p5-1 —1ym-—s—1 .
Lot (y,z,s) = 1 —p"ag, By, o ((m)_ﬁ x (logpk (), ng, ®wh.) if s <m
hs 1 —p~*ag,bn, (s —m)! x (exppk (), ng, ®wn,)  if s >m,

where loggy is the Bloch-Kato logarithm and expphy 4s the dual exponential map.

Proof. This follows from [KLZI17, Theorem 8.2.8, Proposition 10.1.1]. O
Remark 4.3. We recall that the map in the previous theorem is obtained as the composition
Lops = (108445(-), g ® wh),

where log;ljs(') is the Perrin—Riou big logarithm introduced in [KLZ17, Theorem 8.2.8].
Remark 4.4. Interchanging the roles of g and h, we also have a map
Lins: HY(Qp, V@V OA(L = 8)) = I ' T Ogns,
with analogous interpolation properties.
We also recall the following result.
Proposition 4.5. The inclusion Vﬁ — Vy induces an injection
HYQp, Vo &VEQA(L — 8)) = HY(Qp, Vg @VLRA(L —s))
Proof. This is part of [KLZ17, Prop. 8.1.7]. O
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Remark 4.6. By the previous proposition, we can regard the module H'(Q,, Vg ®Vﬁ®A(1—s))
as a submodule of H'(Q,, Vg &VLh®A(1 —s)). Similarly, we can also regard the module
H'(Qp, Vi@V, ®A(1 —s)) as a submodule of H'(Q,, Vg@V, &A(1 —s)).

To shorten notation, put Vghs = Ve®VLQA(1 —s). Let ﬂQVghs C Vgns be the Gg,-stable
Aghs-submodule of rank 3 defined by

T Vens = (VER&VEL + Vg@ViGA(L — s).

Fix a finite set X of places of Q containing co and the primes dividing NyNp,p and let Q* be
the maximal extension of QQ unramified outside X.

Definition 4.7. The balanced Selmer group of Vgps is defined by

HI(Q;M Vghs) >
) )

Héal(@avghs) = ker (HI(QE/Qanhs) — Hl (Q v I
bal\<p» ¥ ghs

where
Héal((@p’ Vghs) = ker (HI(QIM Vghs) — Hl (@pa Vghs/cgﬂvghs))-

Let pr=" : HL ;(Qp, Vgns) = HY(Q,, Vg ®V; ®A(1—s)) be the map induced by the natural
projection F*Vgps — Vg @VF®A(1 —s) and let

‘Cghs : Hkl)al(Qanhs) — Ig_ll_lOghs

be the map defined by ﬁghs = E;}Ts opr~ T oresy. Similarly we define Eghs.

The construction of Beilinson—Flach classes was first carried out by Lei-Loeffler—Zerbes for
fixed modular forms (g,h) of weight two [LLZ14], and was later extended to Hida families
(g,h) in [KLZ20]. Later, in [LZ16], the construction was extended to the Coleman case; as
discussed e.g. in [LR24] there are situations where one must be more cautious and there may
be some poles, for instance, at the critical p-stabilization of an Eisenstein series. However, in
the setting considered in this note we will not deal with this kind of issues.

Recall that, given a newform & of level N¢, its image under the Atkin-Lehner operator
Wi, is a scalar multiple of the conjugate eigenform §*. Then, we define the Atkin-Lehner
pseudo-eigenvalue A, (§) of & by Wi, (§) = An(§)€". As explained in [KLZ17, §10], given
a Hida family & of tame level N, there exists an element Ay, (£) € Og interpolating the
Atkin—Lehner pseudo-eigenvalues of the crystalline specializations of &.

We now state the main result of [KLZ17].

Theorem 4.8. Fiz an integer ¢ > 1 relatively prime to 6pNyNy,. Then, there exists a global
cohomology class

cri(g.h,s) € HL, ) (Q, Vg@VLOA(L — s))
such that

—1)s m B B
£§hs(0/€<g7 h7 S)) = )EN ()g) ' (02 - CQS ! +2X(gp) (C) 1X£f)) (C) 1) X Lp(g7 h,S)
g

and

_1)8 m B B
Chna(on(ahs) = g (= AP0 0 x Ly g.s)
h

Proof. The global cohomology class .k(g, h,s) is introduced in [KLZI17, Definition 8.1.1]. The
result follows from [KLZ17, Proposition 8.1.7] and [KLZI17, Theorem BJ. O
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Remark 4.9. After tensoring with Frac(Ogns), the class
k(g h,s) = C;' @ k(g h,s)
is independent of ¢, where
(4.1) Ce(g,h,s) = ¢ — (s71mt2), D) () =1\ () () =1L,

4.2. Diagonal cycles. In this section, we recall the main results regarding the existence of
p-adic families of diagonal cycles obtained in [DR22] and [BSV22a] building on the previous
geometric constructions of [DRI7].

We use the notations and assumptions introduced in In particular, (f,g,h) is a
triple of Hida families of tame levels (Ng, Ng, Ng) and characters (x¢, Xg, xn) and (f,g,h) =
(f"o,gyo,h‘z’o) is a triple of good crystalline specializations of characters (xf,xg,Xn) and
weights (Ko, lo, mo) with ko +1lo +mg =0 (mod 2). We denote by k : Z)} — Af, L Zy — AZ
and m:Z; — AJ the corresponding tautological weight characters.

The running assumptions imply that xgxgxn = w?" for some r € Z, where w denotes the
Teichmiiller character. Thus we can choose a character t : Z; — Afxgh = (As@Ag®Ap)*~
satisfying 2t = k + 1+ m. There are two choices for t, and we choose the one determined by
imposing that the specialization of t at the fixed crystalline point (xg, yo, z0) is the character

E’;%”O*mf”/ ?. We also make the following assumption.

Assumption 4.10.

(i) The Hida families g and h are residually irreducible and p-distinguished.
(i) V¢ and Vg are free Ap-modules.

Note that, by Proposition the second part of the assumption holds when f is the CM
Hida family introduced in which is the case that we will consider in later sections.

We first introduce a Perrin-Riou logarithm that will be used for the formulation of an
explicit reciprocity law.

Proposition 4.11. There exists a homomorphism of Aggn-modules
Lign ' HY(Qp, VEQVZ &V (2 —t)) = Iz ' Oggn,
such that for every point (x,y,z) € fgh of weights (k,l,m) with Bg,ag,Bn, 7 P (k+l+m—2)/2
the specialization of L’?h at (x,y, z) is the homomorphism
Lint @y, 2)  H(Q Vi @ Vg, @B (1—¢) = C,
given by

[’fJ‘rgh (l‘ Y, 2 ) P Oéf /Bgyahz { (c=D)! X <OgBK( )7wfz ®77gy ®whz> ifl <k+m

1 —p=“B,ag, Pn, (I —c—DI'x (exphk (), we, ®ng, ®wn,) fl>k+m,

where loggyk denotes the Bloch-Kato logarithm, exphy denotes the dual exponential map and

c=(k+1+m—-2)/2.

Proof. This follows from [BSV22bl, Proposition 7.3]. O

Remark 4.12. We recall that the map in the previous theorem is obtained as the composition
Lan "= (logg, " (1), we ® Mg @ wh),

where loggé;’(') is the Perrin—Riou big logarithm introduced in [BSV22bl Proposition 7.1].

Remark 4.13. Letting f (resp. h) play the role of g in Proposition we obtain a similar
map Efgh (resp. £fgh ) with analogous properties.
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To shorten notation, put Vttgh = Vi@Vg®@Vp(2—t). Let & 2V1g
Aggn-submodule of rank 4 defined by

Ty, = (Vi&VEQVE + VISV + VERVIGVL)(2 - t).

e Vigh be the GQp—stable

Fix a finite set ¥ of places of Q containing oo and the primes dividing NNy Np,p and let Q>
be the maximal extension of Q unramified outside X.

Definition 4.14. The balanced Selmer group of VI’gh is defined by

H"(Qp, Vigp)
Héal((@’VIIgh) = ker (Hl (@E/Qavlgh) — M)a
a. ’ {3

where
H} 1 (Qp, Vi) = ker (HY(Qp, Vi) — HY(Qyp, Vi /F2VE,)).
Let prt—T : Hgal(Qp,VIgh) — Hl(Qp,VFQ?Vg@VI@ —t)) be the map induced by the
natural projection %ﬂVIgh — V?@Vg@VI(Q —t) and let

£%‘gh : Héal(Q7VI'gh) — Ig_lofgh

be the map defined by [I%gh = E:fg;f opr~t ores,. Similarly we define Eiffgh and Elf‘gh.
We now state main result of [DR22] and [BSV22h).

Theorem 4.15. There exists a global cohomology class
k(f,8,h) € Hpy (Q, Ve®Vg@Vp(2 —t))
such that, for € € {f,g, h}, we have that
L (k(f,8,h) = Z5(F, g, h).

Proof. This is [BSV22bh, Theorem A] or [DR22, Theorem 5.1].
O

4.3. Anticyclotomic diagonal cycles. We keep the notations and assumptions in the previ-
ous subsection, as well as the notations and assumptions in and specialize the discussion
in the previous subsection to the case in which f is the Hida family introduced in with

=1 = Eisi(ek).

In this case, we have a class

k(f,g,h) € HY(Q,Ind% A¢(p)&Va&Vy(2 - t))
which under Shapiro’s isomorphism can also be seen as a class in
HY(K, A¢(9)&Vg@Vh(2 — t)).
Moreover, after specializing f to f, we obtain a class
k(f,g,h) € HY(Q,(1 @ ek) @ Vg@Vi(2 — t1)) = HY(K,Vg&Vy(2 — t1))

where t1 is the composition of t with the map (Af@Ag®@AR)* — (Ag®Ap)* induced by the
point xg : A — O.

Assume now in addition that p does not divide the class number of K. Then the classes
k(f, g, h) yield classes

/%(f7 g, h) €H' (K7 AaC(K’e;cl)(ng@Vh(z - tl)) = H%W(K§S7Vg®vh(2 - tl))v

where K3 denotes the anticyclotomic Zp-extension of K, Aye = Z,[[Gal (K5 /K)]] denotes
the corresponding Iwasawa algebra and k.. : Gx — A, denotes the tautological character.
When f is residually non-Eisenstein, [ACR23b] realises the class #(f, g, h) as the bottom layer
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of an anticyclotomic Euler system. However, this does not apply to the choice of f in this
article. We intend to come back to this in the future.

5. COMPARISON OF CLASSES

We keep the assumptions and notations introduced in previous sections. In particular, K
is an imaginary quadratic field in which p splits and f is the CM Hida family introduced in
with f = f7 = Eisi(ex). Also, (g,h) is a pair of Hida families of tame levels (N, Np)
and characters (xg, Xn) such that xgxn = exw?" for some r € Z, and g = gy, and h = h3
are good crystalline specializations of g and h of weights g > 2 and mg > 1, respectively.
They have characters (xq, xn) = ( (gp),xﬁlp)). We define oy = ap(8y,), By = Xg(p)ploflagl,
ap = ap(hy,), B = Xh(p)pmo_lagl. The corresponding definitions for f yield ay = gy = 1.
Set ¢g = so = (lo + mo — 1)/2. The following set of assumptions will be in place in all this
section.

Assumption 5.1.

(i) ng(NgaNh) =1;
(ii) g and h are residually irreducible and p-distinguished;
(iii) h is a newform of level N}, (i.e., h has prime-to-p conductor).

5.1. An equality of p-adic L-functions. Set Agp, = Ag®Ay and Ogn = Agn[l/p]. Let
2,7 (f,g,h) € Iy 1(’)gh be the two-variable p-adic L-function obtained from the three-variable
p-adic L-function .£,%(f, g, h) introduced in by specializing f to f. Also, we define
Ly(g,h,(14+m —1)/2) € I;'Ogp as the restriction of the three-variable p-adic L-function
L(g,h,s) introduced in to the plane 2s = 1+ m — 1. Similarly, we define the p-adic
L-function Ly(g,h ® ex, 1+ m —1)/2) € I;'Ogy by replacing h by its twist h ® ek

Proposition 5.2. We have the following equality of p-adic L-functions:

I+m-1 I+m-1
4°(f. 8, h)2 =L, (ga h, 2) L, (g;h®€K72>-

Proof. Since the points (y, z) € ngWfll with weights k, > k. and with p { cond(g,)-cond(h,)
form a Zariski dense subset of Uy x U, it suffices to prove the equality after specialization at
each such point. Note that for such a point we have that (xg,y, z) € ngh'

Fix such a point (y, z) € Wg x Wil of weights (I,m) with I > m and let ¢ = (I +m —1)/2.
Since V¢ =2 L(1) @ L(ek), we deduce by Artin formalism the equality of complex L-values

L(f. gy, hZ,c) = L(g,, hZ,c)L(g,, hi ® ek, ¢).

Then, the equality

I+m-1 l+m-1
202 =L (05 ) 00 I (e e ) 002)

follows from Theorem [3.2] and Theorem [3.6 O
From now on, we make the following assumption.
Assumption 5.3. The p-adic L-function .Z,(f, g, h) is not identically zero.

Remark 5.4. Note that, in light of Proposition the assumption immediately implies that
the p-adic L-functions Ly(g, h, (1+m—1)/2) and L, (g, h®eg, (14+m—1)/2) are not identically
Zero.
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5.2. Weighted Beilinson—Flach class. As in previous sections, we denote by V¢ the big
Galois representation associated with a Hida family . Note that the representations Vyge,
and Vi, ®eg are isomorphic. Since p splits in K, an isomorphism of Ap[Ggl-modules Vyg,, =
Vnh®eg yields an isomorphism of Ay[Gg,]-modules Vyge,, = Vi, and hence an isomorphism of
Dieudonné modules D(VK®€K (1-m—xp)) 2 D(V{ (1-m—xp)). We choose an isomorphism

t: Vhge, — Vi ® ei so that the composition

<'7wh>

D(Vi,. (1-m—yxn)) > DV{(1l-m-xp)) —> On

h®ex

agrees with the map
( sy wh@sK >

D(Vig, (1 —m —xn)) On
and from now on we identify Vyg., with Vi ® ex via this isomorphism.
We put V}gh =V; ® Vg®Vp(2 — t1) and Vgh = Vg&Vn(2 — t1). Note that

T~ T
Vfgh - (1 @5[{) ®Vgh'

After specializing to the plane 2s =14+ m — 1, the class .x(g, h, s) introduced in yields a
class (g, h) in HI(Q,V;h). Replacing h by h ® ex, we also obtain a class .x(g, h®ck) in
Hl(Q,VLh ® ek ). We define

(1) (—1)°
= xg ' ()x;, (o) = xg ' (0)x, (e (c)e
Note that, on account of Remark the classes kg h and Kg hge, do not depend on c. Note
also that

‘cﬁ(g, h®€K) .

Kgh = ek(g,h) and  Kghee, =

Kgh € Héal(QvV;h) and  Kghoey € H%al(QvV;h ® k),

where the Selmer groups Hgal(Q, V;h) and Hﬁal((@, V;h@)a k) are defined as in specializing
now all objects to the plane 2s = 1+ m — 1. Further, recall the basis {vf1,vsc,} of V
introduced in We now use these elements to define the Beilinson—Flach class that we
will use in the comparison.

Definition 5.5. The weighted Beilinson—Flach class associated with the pair (g, h) is the
element

I+m-—1 I+m-—1
BF(f,g,h) = vp1 ® Ly (gvh R EK, 2) Kgh T Ve @ Lp (g,h, 2) Rgh®e g

in HY(K, V).

Since complex conjugation acts trivially on BF(f, g, h), according to the definitions of the
vectors vy and vy, given in this element descends to a class in H* (Q,V}gh) that we
still denote with the same notation, i.e., we have

BF(fv g, h) € Hl(@v Vngh)'

5.3. Selmer conditions. Fix a finite set ¥ of places of Q containing oo and the primes
dividing Ny NyNp,p and let Q> be the maximal extension of Q unramified outside X.

Let Z2Vh . C Vi be the Agp-submodule of rank 4 defined by

T = (ViEOVERVE + VIGVEQVE + VIRVI&VL)(2 — t).

Then, as in we define the balanced Selmer group of V}gh by

HY(Qp, V) )
) b

@ V) = b (1Q%/ ) =
bal\=P> 7 fgh
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where

Hy (@, Vi) = ker (HY(Q,, VE ) — HY(Q,, Vi / 72V ).

We also need to introduce other Selmer conditions. Let V?gh C V}gh be the Agp-submodule
of rank 4 defined by
Vign = Vr @ Vg &Vp(2 — t1)

and let V‘%K = Vfcgh + F QV}gh, which is a Agp-submodule of V}gh of rank 5.

Definition 5.6. For £ € {G,G U +}, the Selmer group H}(Q,V}gh) is defined by

HY(Qp, V)
HLQ,VE ) =k (Hl Q%/Q, Vi ) — pfgh)
£(Q, Vi) = ker ( H(Q¥/Q, V) HIQ V)

where
ker (HY(Qp, Vi) — HY(Qp, Vi / Vi) i L=,

ker (HN(Qp, Vi) — HY(Qp, Vi /VI0)) i L=GU+.

5.4. Perrin-Riou maps. In this subsection we introduce the Perrin-Riou maps that we will
need for the comparison.

Hi(@pa V}gh) =

Proposition 5.7. There exists a homomorphism of Agn-modules
Lyt HY(Qp, Vy @V (2 = £1)) = I ' Ogn,

such that for every point (y,z) € Wg X Wﬁl of weights (I,m) with ag, fn, # pUtm=1)/2 ype
specialization of E;lf at (y, z) is the homomorphism

_ _ 3—1l—m
tat a1 (o o (B1m)) o,

given by

_ _ _ _1\(m—1-1)/2 .
1 — plitm 3)/204gy15h21 % X (10gBK('),77§y ®uwn,) ifl<m+1
Ry

Lo (y:2) =
gh 1 _p(lfzfm)/2agy6hz (l—mT—l)u x (exphi(+), g, © Wh,) if 1 >m 41,

where loggy 1s the Bloch-Kato logarithm and expyy s the dual exponential map.

Proof. The existence and properties of the map E;}f can be deduced from those of the map

E;ﬁ's in Proposition following the argument in [BSV22b, Prop. 7.3]. O

Remark 5.8. Similarly, we have a Agp-module homomorphism
Ll HY(Qp, Vg&V (2= t1)) —= I Ogn,
with analogous interpolation properties.

Lemma 5.9. The Agn-module H' (Qp,Vg@)VI(Q —t1)) is torsion-free.

Proof. To shorten notation, we write V = Vg_®VK (2—t1). Note that, as a Agn[Gg,]-module,
we have that

\a= Agh(xggglghG),
where X, is the unramified character of G, defined by Xg(Frp) = Xg(p), @ is the unramified

character of G, defined by a,(Frp) = a,(g), ay, is the unramified character of Gg, defined
by ay,(Frp) = a,(h) and © is the character of Gg, defined by

0 = Wit "™ D2 (0) (eeye(0)) T (eeye(@)) P ag © [{Eeye(9)) %]y
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Let A € Agh. Then, we have an exact sequence
H°(Q,, V/AV) — HY(Q,, V) — H'(Q,, V),

where the second arrow is multiplication by A. Thus, in order to show that the Agn-module
HY(Q,,V) is torsion-free, it suffices to show that H°(Q,, V/AV) = 0 for all non-zero A € Agp.
For that, it suffices to show that H°(Q,, V/QV) = 0 for all height-1 prime ideal Q of Agp.
Note that, if (lo —mo —1)/2 # 0 (mod p— 1), then the inertia group Ig, acts non-trivially on
V/ZV for any proper ideal Z of Agp, so the result is immediate. Thus, we assume from now
on that (Ip —mo —1)/2 =0 (mod p — 1) and therefore that Iy = mp + 1 (mod 2(p — 1)).

Note that Agp, is a finite flat extension of the unique factorization domain A®A ~ Z,[[X, Y]].
Let v be a topological generator of 1+ pZ, (e.g., we can take 79 = 1+ p). If q is a height-one
prime ideal of A®A different from the ideal generated by [y9]®1—1®0[Y0], then the character
Olg, : g, — ((A®A)/q)* is non-trivial and therefore H%(Q,, V/QV) = 0 for any height-one
prime ideal Q of Agp lying above g.

Now let q; be the height-one prime ideal of A®A generated by [y] ® 1 — 1 ® y9[70] and
let 9y be a height-one prime ideal of Agp above q;. Let g2 be the height-two prime ideal of
A®A corresponding to the arithmetic point (P—2.1,P-31) € W x W for some integer [ > 3
such that [ = Iy (mod 2(p — 1)). Note that g1 C q2. Since Agyp, is a finite extension of A®A,
we can find a prime ideal Q9 of Agy, lying above q2 and such that Q1 C Qg. The prime Qo
corresponds to a crystalline point (y, z) € Wg X Wﬁl of weights (I,I — 1). Since [ > 3, both
gy and h; are p-old. Therefore, by the Ramanujan—Petersson conjecture, we have that the
complex absolute value |an, /ag,| is p~ /2. In particular y,(p)an,/ ag, # 1. It follows that
HY(Q,, V/93V) = 0 and therefore H°(Q,, V/Q;V) = 0. O

Proposition 5.10. The map E;];r 18 injective.

Proof. By Theorem

c;f@r*<m%u@m»>=AMx@*zm(&h,

l+m-1
— )

In particular, it follows by Assumption that the Agp-module homomorphism [,;}T is non-
zero. Since H'(Q,, Vg @V (2 —t1)) is a torsion-free Agp-module of rank 1, it immediately
follows that £;1:r is injective. O

Proposition 5.11. There exists a homomorphism of Agn-modules
i+ H\Qp Vi ® VgOVE(2 —t1)) = I Ogn,

such that for every point (y,z) € Wg X Wﬁl of weights (I,m) with ag, fn, # pltm=1/2 4pe

specialization of ﬁ;[gchr at (y, z) is the homomorphism

_ _ 3—1l—-m
Ll (y,2): H' <@p, VeV, eV ()) - C,

2
given by
B o _1)(m—1-1)/2 )
LEoF (g 2) = 1 —pttm 3)/2agy1/6h21 " ((anl). x (logpk (), wr @ng, ®wn,) ifl<m+1
fgh V=)

1-— p(l—l—m)/zagyﬂhz (Hanl)l X <eXpEK(')7 wf ® ngy X whz> ’l/fl Z m + ]_’
where loggk denotes the Bloch-Kato logarithm and exppy denotes the dual exponential map.
Proof. This follows as in [BSV22bl, Proposition 7.3], working with V} instead of V¢. O

Remark 5.12. Similarly, we can define maps £]ng; and £;;f.
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Remark 5.13. The relation between Egﬁr and £?g?h+ is as follows: given an element
vz eV H (Q, Vg®V{(2—t1)) = HY(Qy, V) ® Vo &VE(2 - t1)),

we have that

Lig (0@ 2) = (v,wp) - L (2).

5.5. The explicit comparison. We can now present one of the main results of this note,

which was already anticipated in the introduction. The result gives a direct comparison

between the weighted Beilinson—Flach class introduced in §5.2] and a diagonal cycle class, in

analogy with the main results of [LR24].

Recall that the class kg 1, belongs to the balanced Selmer group Héal(Q, Vgh). Therefore, the
image of res, (kg n) in H(Q,, Vg ®Vp(2—t;)) lands in HY(Qy, Vg@Vﬁ@—tl)) and the image
of resy(kgn) in H'(Qy, Vg®VL (2 — t1)) lands in H'(Q,, VE&V, (2 — t1)). We denote these
images by resy(kgn)” " and res,(kgn)t ", respectively. Similarly we define res,(kg hgex) "
and res, (kg hoey )T

We now establish the key proposition towards the comparison that we will prove later.

Proposition 5.14. The image of res,(BF(f,g,h)) in H(Qp, V; @ VZ &V, (2 — t1)) lands in
HY(Qy, Vf+ ® Vo QVE(2—t1)) and is given by

I+m-—1

_ l+m-—1
v;‘r ® (Lp (g, h® ek, 2) 1Aesp(’fg,h) T+ Ly, (g, h, )

—
Proof. Since kg1 belongs to H&al(Q,V;h) and Kgnhge, belongs to Hgal(Q,V;h ® €k), the
image of res, (BF(f,g,h)) in H'(Q,, Vy @V, ®Vy(2—t1)) lies in HY(Q,, Vf®Vg_®VK(2—t1)).
Therefore, to conclude the proof it suffices to show that the class
B l+m-—1 B I+m-—1 _
vy ® (Lp <g, h® eg, 2) res,(kgn) T — Ly (g, h, 2) res,(Kg hoey ) +>
in HY(Q,, Vi @V ®V; (2 — t1)) is zero. Using Theorem we have that

- l+m-—1 _ l+m-—1 .
Eglf <Lp (g,h R EK, 2> res,(Kgh) t—L, <g, h, 2) res,(Kg hoes ) +>

_ Il+m-—1 Il+m-—1
=y, (g8) " Ly (g,h®ex,) Ly, (g,h, )

2 2
- l+m-1 l+m-—1
B )\Ng(g) t Lp <g7h7 2> Lp <g7h®€K7 2> =0.
Since the map L’;}T is injective by Proposition the result follows. O

Remark 5.15. As a consequence of the previous proposition, we have that
BF(f,g h) € Hp, (Q, V).

Let k(f, g, h) € HL (Q, V}gh) be the class obtained from the class x(f, g, h) € H_ ,(Q, Vlgh)
introduced in Theorem by specializing f to f. We denote by res,(x(f, g, h))T~" the im-
age of the class res,(k(f,g,h)) in H(Q,, VfJr ® Vg@VK@ — t1)). Similarly, we denote by

res,(BF(f,g,h))*~F the image of res,(BF(f,g,h)) in H'(Qp, V;" ® Vg &V (2 — t1)).
We also introduce the following definition.

Definition 5.16. Let 2y, € L™ be the p-adic period given by

Qpn =2 (vf,wyp)f
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Remark 5.17. The definition of Q¢ depends on the isomorphism ~ fixed in hence the
notation.

Theorem 5.18. The equality

Qpy - Efgh (resp(f@(f,g,h))Jr*Jr)Q = An,(8) - ﬁf h [ (vesp(BF(f,g,h)) ")
holds.

Proof. By Proposition we have that
—~ l+m-—1
E}_gh+(resp(BF(f7ga ))Jr +) < Uy 7wf> LP <g’h®€K72> ﬁgl—li_ (resp(/ig h) +)

l+m-—1
s ofon) Iy (0 ) Lo (s lenen) )

Using Theorem [4.8] it follows that
Q l+m-—1 l+m-—1
+—+y _
ﬁf n (resy(BF(f, g,h)) ) = m Ly <g, h, 2> Ly <g7h®8K7 2) :
Hence, by Proposition
ANg (g) : Ej"_g_h+(resp(BF(f7 g, h))+7+> = Qf,’y : gpg(fa g, h)27
which is equal to
Qi - Efgh (resp(k(/f, 8, h)) )2
by Theorem O

Corollary 5.19. Assume that Héu+(Q,V}gh) is a torsion-free Agn-module of rank 1. Then
BF(f,g,h) belongs to Héal(Q,V}gh) and

)\Ng( ) BF(fvgvh) = Qfﬂ/ "’gpg(.ﬂgvh) ’ K(fvgvh)'

Proof. Let prt=* : H} |, (Qp, fgh) — HY(Qp, V;" @ Vg @V (2 —t1)) be the map induced by
the natural projection Vgu; — V+ ®V‘®V+(2 t1). Since the element .Z,9(f,g,h) € Ig_l(’)gh
is non-zero by Assumptlon 1t follows from Theorem [4.15] that the map

E}'thr oprt~Tores, : Hg ,, (Q, Vfgh) — I Ogn

is non-zero and therefore injective by our assumptions on H} Gut (Q, V} gh). Since both k(f, g, h)

and BF(f, g, h) belong to Héu " (Q,V}gh), the result now follows immediately from the pre-
vious theorem. g

Remark 5.20. Regarding the assumptions in the previous corollary, it is expected by sign
considerations that the Agp-module Hl (Q, V}: ) has rank 1 and that the Agp-module

HE(Q, Vfgh) has rank zero, which would easily imply that the Agp-module H} ., (Q, Vfgh)
has rank 1. Moreover, we can ensure that ng +(Q, Vfgh) is torsion-free by imposing the

condition that H%(Q,p') = 0, where p' is the residual representation attached to Vfgh

Remark 5.21. Tt may be instructive to discuss the analogies and differences between a compar-
ison of this kind and that carried out in [LR24], where we also used a Coleman family passing
through a critical Eisenstein series. Here, the main idea is to construct cohomology classes
over K, that we can then descend and compare with a class over Q. However, in [LR24], the
classes are all defined over Q, so the comparison is between a suitable projection of one of the
classes and the other. Moreover, weight-one modular forms behave in an ostensibly different
way, since both p-stabilizations are ordinary.
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Corollary 5.22. Assume that Héqu(Q,V}gh) is a torsion-free Agn-module of rank 1. Then

v, (8) l+m-—1 l+m-—1
gpg(fa g, h)gph(fa g, h) = )\Ng(h) : Lp <g) h7 2) Lp <h®5K7g7 2)
h
AN, (g) l+m-1 l+m-1
)\Nh(h) AR XK eEK, 9 D » 8 92

Proof. By the previous corollary, we know that BF(f,g,h) € Héal(Q,V}gh). Therefore, the
image of BF(f,g,h) in H'(Qy, Vi ® Ve®Vi (2 —t1)) is zero. This image is given by

l+m-1 l+m—1)

v]? ® (Lp (g, h® ek, 2) resp(mg,h)Jr* - L, (g, h,

so it follows that

Lp <g,h®€K,

resp(’%g:h(@u{ )+> )

I+m-1 _
) resp(mg,h®€1{)+ =0.

l+m-—1 _
) resp(’ig,h)Jr - Lp <g7 h7

Applying the Perrin-Riou map E;r}; , we deduce by Theorem that

l1+m-—-1 l1+m-1
L, <g7h7 2) L, <h®€K7g7 2)

l+m-1 l+m-—-1
- i (ghone ) g (g L),

Now note that, for any element
vz eV @ H (Qy, VE®V,(2—t1)) = H'(Qy, VT @ VERV (2 - t1)),
we have that
[,;[gh*(v ® z) = (v,ws) - Eg};(z).
Let prt+— : Héal(Qp,V}gh) — HY(Qp, V{" @ VE&VL (2 — t1)) be the map induced by the
natural projection .# QVngh — Vf+ ® Vg@V; (2 — t1). Using Theorem and equation
the image of BF(f, g, h) by L~ o prt*~ ores, is equal to
_ l+m-1 l+m-1

Qfy Ay, (W)™ L, <g,h, — > L, <h®5K,g, — > .

Also, by Theorem the image of k(f, g, h) by E;{gﬁ; oprt™~ ores, is equal to ,S,”ph(f, g, h).

Hence, the result now follows from the previous corollary.

g

Remark 5.23. Note that the p-adic L-functions involved in the statement have disjoint inter-
polation ranges, so the result does not follow by a direct comparison of complex L-values.

5.6. Formulae for specializations. We can now specialize the Hida families (g,h) and
obtain similar results for the fixed modular forms (g, h). We write (ga, ha) = (8yo, hz,)-

Let E;;La : HY(Q,, V;@V,;L(l—co)) — Cp and £;[g:,ta : HY(Q,, Vf+®Vg_®Vh+(1—co)) -G,
be the maps obtained from the maps E;}; and E?g;f introduced above by specializing (g, h)

t0 (ga, ha). Note that, for any element
veze Vi@ H (QyV, @V, (1-c) = H(Qp Vi @V, @V (1 - c)),
we have that

E}rgjga (v®z) = (v,wr) - L F(2).
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Also note that, if ay3, # plotmo=1 then we have

—1)(mo—lp—1)/2 .
g dPaggt [ ety < g, @) il < mo

X
(%)' X <eXpEK(‘)’,’7‘2¢a X wha> lf lO > mo.

To shorten notation, we write VJI g = Vi®Vy® V(1 — ¢p) and we define Selmer conditions
and Selmer groups for this representation analogous to the ones introduced in for the
representation V} gh- We denote by (f, 9o, ha) € HL(Q, VfT gh) the specialization of the class

k(f,g,h) and we denote by BF(f, ga,ha) € HéUJr(Q,Vngh) the specialization of the class
BF(f, g h).

Proposition 5.24. The equality
Qfy - Lot (esp(r(f, gar o)1) = A, (9) - L, (resp(BF(f, gas ha )t ™)
holds.
Proof. This is an immediate consequence of Theorem O

Corollary 5.25. Assume that H}, (Q, Vngh) is 1-dimensional and that £,°(f, 9o, ha) # 0. If

lo =2 and mg = 1, further assume that ayfBy, # 1. Then BF(f, ga, ha) belongs to Héal((@, V]jgh)
and

)\Ng (g) : BF(f, 9o, hoz) = Qfﬁ : gpg(fa Ja, ha) ) ,‘Q(f, Ja, hoz)‘

Proof. Arguing as in the proof of [ACR23D), Thm 9.5], we have H} ,, (Q, V]:rgh) = H!,(Q, V}rgh).
Now the proof follows as in Corollary 0

Remark 5.26. We emphasize that the class k(f, ga, ha) can be interpreted as an anticyclotomic
cohomology class via the identifications discussed in

5.7. A factorization formula for the big logarithm of a Beilinson—Flach class. As
a consequence of the cyclotomic results of [BDV22|, Biiyiitkboduk, Casazza, and Sakamoto
[BC23|, [BS23] obtained an expression of the Hida-Rankin p-adic L-function in terms of the
Ochiai big logarithm of the Kato class. Here, we discuss an analogue of [BC23| Prop. 8.9],
showing that the image of BF(f, g, h) under a suitable Perrin-Riou map factors as the product
of two triple product p-adic L-functions.

Let £ 0" + HY(Qp, Vi @ VEGVE (2 — t1)) = Ogn be the Perrin-Riou map obtained from
Lggn by specializing f to f. It is given by the composition of a big logarithm map log;gﬁj'
with the map obtained by pairing with n?‘a ® wg ® wp. Note that the pairing is taken with

respect to the differential n?‘a corresponding to the p-stabilized form f,, as opposed to 77?‘.
Definition 5.27. We denote by Loge, own the Agp-module homomorphism

Logu, pw, = 5;;? opr Tt ores, : H&al(Q,V}gh) — Ogh.

Remark 5.28. In terms of the Beilinson—Flach classes, we can think that the pairing with
Ng ® wh (resp. wg ® 1) allows us to recover the p-adic L-function Ly(g,h) (resp. Ly(h,g)),
while here we are considering instead the pairing with wg ® wp.

Let fpf (f,g,h) € Ogn be the two-variable p-adic L-function obtained from the three-
variable f-dominant p-adic L-function fpf (f,g,h) introduced in by specializing f to f.
In this subsection, we relate the p-adic L-function fpf (f,g,h) to the weighted Beilinson—

Flach class BF(f, g, h). Note that, while .%,9(f, g, h)? and .,iﬂph(f,g, h)? may be factored as
the product of two Hida—Rankin p-adic L-functions by p-adic Artin formalism, the case where
the dominant p-adic L-function is Eisenstein is subtler, as already shown in [BC23].
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Proposition 5.29. Assume that Héu+(@7 V}gh) is a torsion-free Agn-module of rank 1. Then
we have the following factorization of the image of the Beilinson—Flach class under the Perrin-
Riou map Log,, ¢, -

Qf,’Y ' jpg(fv g, h) : zpf(fv g, h) = )\Ng (g) : Logwg®wh (BF(f7 g, h))
Proof. By Corollary we have

AN, (8) - BE(f. g, h) = Qs - Z,7(f,8,h) - £(f, 8, h).
The result then follows immediately by taking Log,,, ., and using Theorem O

6. THE p-EXCEPTIONAL CASE

We keep the notations and assumptions in the previous section, and consider now the
situation where there is a trivial zero for the p-adic L-function .Z,9(f,g,h), as well as for
the p-adic L-functions L,(g,h) and L,(g,h ® k), at the point (yo, z0) corresponding to the
modular forms (g, h) arising from the vanishing of an Euler factor at p. In this situation,
the statements in become trivial, so we introduce improved classes and improved p-adic
L-functions to remove the vanishing Euler factor.

Hence, along this section we will work under the following assumption.

Assumption 6.1. With the previous notations, it holds that
lo+mg—3
O{quh =p 2

Since g and h are p-ordinary and p { cond(h), it follows from this assumption together with
the Ramanujan—Petersson conjecture that (lo,mp) = (2,1) and that g has conductor Ngp.
Note that this situation includes in particular the case where g is the modular form attached
to an elliptic curve over Q with multiplicative reduction at p, which is of great arithmetic
interest.

We consider the following codimension-1 subvariety of Uy X Uh:

Y ={(y,2) € Ug X Un | rg(y) = rn(z) +1}.
Let C be an irreducible component of ) containing the point (yo, zp). We denote by O¢ the
corresponding ring of global functions. Note that an arithmetic point (y,z) € C C Ug X U
will have weights (/,/ — 1) for some integer /. We denote by C°' the intersection of C with
Wel x Wel,
Note that, for any point (y, 2) € C%! with p { cond(g,)-cond(h,), the Euler factor &(zq,y, z)

appearing in the interpolation formula for .Z,9(f, g, h) and the Euler factor £(y, 2, s(y, 2))
appearing in the interpolation formula for L,(g,h, (1+m — 1)/2) are given by

E(@o,y,2) = E(y,2,5(y,2)) = (1 — Xg(p) Z;>2 (1 — Xg(p) g:y)z

For varying values of (y,2) € C, the factors 1 — x4(p)an, agyl

L-function (h)
a
1 — xy(p) = € O,
g( )ap(g)

are interpolated by the p-adic

which vanishes at the point (yo, 20).
Remark 6.2. The appearance of the double factor
ap(h)\?
1—-x (p)p>
< I ap(g)

in the interpolation formula for .%,9(f, g, h) (resp. L,(g,h,(14+ m — 1)/2)) at points in C
comes from two different sources:
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e the numerator in the interpolation formula for the Perrin-Riou map E}rg;j (resp. Cglj );
e the comparison between the corresponding p-stabilized and non-p-stabilized cohomol-
ogy classes.

6.1. Improved p-adic L-functions. In this subsection we introduce the improved p-adic
L-functions that we will use.

Theorem 6.3. There exists a p-adic L-function

L,y(g,h) € I;'O¢
such that
ap(h)
ap(g)
Proof. Let N = lem(Ngy, Ny). Let By = Ei}g\,(ﬂ be the weight-1 holomorphic Eisenstein

series introduced in [LLZ14. §5.1]. Then, as in the proof of [BSV22b, Lemma 9.8|, one shows
that the p-adic L-function

- (Wn(g), eora(E1 - h))

2/\
Ly(g.h, (1+ m — 1)/2)]c = (1 ) ) L,(g h).

L,(g,h) = N e ;10e
»(8:1) (g 8)N g
satisfies the required properties.
O
Theorem 6.4. There exists a p-adic L-function
=9 _
jp (f>g7 h) € Ig 106’
such that
g ap(h) ? o9
gp (f?gvh)’C: 1_Xg(p) gp (f7g7h)
ap(g)
Proof. This is proved as in [BSV22b, Lemma 9.8], taking (f, g, h) in loc. cit. to be our (g, h, f).
O

6.2. Improved Perrin-Riou maps. In this subsection we introduce improved Perrin-Riou
maps. Given a Agp-module M, we denote by M|c the O¢-module M @Agn Oc.

Proposition 6.5. There exists a homomorphism of Oc¢-modules
Lt HY(Qp, Vg @Vi(2 —t1)le) = Ig ' Oc,

such that for every point (y,z) € C° of weights (1,1 — 1) the specialization of EA;J at (y, z) is
the homomorphism
Lot (y,2): H(Qp, Vg, @ Vi (2-1)) = C,

given by
- 1
7+ _ ES
Fan 002 = 70 g, 7 (PR C) e € g, © ).
Proof. This follows from [BSV22bl, Lemma 9.4]. O

Proposition 6.6. There exists a homomorphism of Oc¢-modules

Ll HNQp, Vi @ VE&VE(2 - t1)|e) — I ' Oc,
such that for every point (y,z) € C° of weights (I,1 — 1) the specialization of E}_g_h—i_ at (y,2)
18 the homomorphism

Liat(y,2): HNQp Vi @ Vg @ BH(2-1) = C,
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given by
Bty s) = —— o (explyc () wr @18 @ wn)
fen %) =7 — p'lag, B Pk ("), Wf @ g, ©Wh, ).
Proof. This follows from [BSV22h, Lemma 9.4]. O

Remark 6.7. As before, given an element
v®z e Vi@ H (Qy Vg®Vi(2—t1)le) = HY(Q,, Vi @ Vg &V{ (2 - t1)le),
we have that
Elat 0 2) = (v,007) - B (2).

6.3. Improved cohomology classes. We now introduce the improved version of the coho-
mology classes that have been used in this work.
We can define Selmer conditions for the O¢[Ggl|-modules V;h]c and V}gh|c analogous

to the ones introduced for VTgh and V}gh in the previous section and consider the corre-

sponding Selmer groups. In particular, we can consider the Selmer groups Héal(Q,V;h\c),

Hyot (Q, Vigyle) and Hy (@, Viple).
While in the case of diagonal cycles there is a construction of an improved cohomology class,
this is not the case for Beilinson—Flach elements. As it occurs with the p-adic L-function, the

factor (1 — Xg(P) ZZEB) appears in the interpolation property when considering its variation

in families (see e.g. [KLZ17, §8]). Hence, the following conjecture can be seen as a standard
expectation in the theory of exceptional zeros, and we expect to come back to it in forthcoming
work.

Conjecture 6.8. There exists a cohomology class Kgn € Hgal(Q,V;hk) such that

Kghlc = (1 - Xg(@%) Kg,h-

Remark 6.9. Similarly, we also expect to have an analogous improved cohomology class
Kghoeg € Héal(Q’V;h‘C ®EK).

For the rest of this section, we work under the following assumption.
Assumption 6.10. Conjecture [6.8 holds.

Let pr=* : H (Qp, Viyle) = HY(Qp, Vg ®V{(2—t1)|c) be the map induced by the natural
projection EQV;}JC — Vg@VK(? —t1)|c and let

L& Ho(Q. Vigle) — I 'Oc
be the map defined by Egh = Eg_l:r opr— T ores,.
Proposition 6.11. The class kg satisfies
ﬁgh(k\g,h) = Ly(g,h).

Proof. By Proposition [6.5], Theorem [4.8] and Theorem we have

Q—&@Zg

2
> LY (Rgn) = L3 (kg h)le = Ly(g, h)le

_ _ ap(h) 2
- <1 Xg(p)ap(g)> Lp(g7h)
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By the Ramanujan-Petersson conjecture, the factor 1 — x4(p )apg ; does not vanish at any

point (y, 2) € C%! with p { cond(g,) - cond(h,), so in particular it is non-zero in O¢. The result
now follows from the above equality. O

Remark 6.12. Similarly Egh(k\g,h(@e;{) = Ep(g, h®eg).

Proposition 6.13. There exists a cohomology class K(f,g,h) € Héal(Q,V}gh]c) such that

k(f. g h)le = (1 — Xg(P) " > R(f,g,h).

Proof. This is proved in [BSV22b), §9.3]. O

S
=

Let prt=* : HL(Qy, Vhple) = HY(Qp, V' ® Vg &V; (2 — t1)|¢) be the map induced by
the natural projection ﬁQV}gh]c — Vf+ ® Vg &V (2 — t1)]¢ and let
L"?gh : Héal(Q7V}gh|C) — Igloc
be the map defined by [, Feh = ‘C'fgh oprt~T ores,.
Proposition 6.14. The class k(f,g,h) satisfies

29
fgh( (f g, )) (f,g7 h)
Proof. By Proposition Proposition Theorem [4.15] and Theorem [6.4] we have

2
(12 ) EoenFl ) = Lo W)e = 277 e

ap(8)
_ o ap(h) 2 S
— (1= %028 ) Zfb)

By the Ramanujan-Petersson conjecture, the factor 1 — x4(p )a’;g ; does not vanish at any

point (y, 2) € C%! with p { cond(g,) - cond(h,), so in particular it is non-zero in O¢. The result
now follows from the above equality. O

6.4. The main theorem. In this subsection, we adapt the main result of §5.6]to the current
exceptional case.

Proposition 6.15. We have the following equality of p-adic L-functions:
59 ~ ~
%y (f.8:1)* = Ly(g, h)Ly(g. h ® e).
Proof. By Proposition [5.2] Theorem [6.3] and Theorem [6.4] we have the equality

Q.X@Wmf§ng2<1x@%®f5@migmm>
- IR =¥ = - 3 9 K

T ap(g)) T T ap(g)) " 8

p(h)

in Iy 20¢. By the Ramanujan-Petersson conjecture, the factor 1 — x4 (p ) e does not vanish

at any point (y,z) € C% with p { cond(g,) - cond(h,), so in particular it is non-zero in Og.
The result now follows from the above equality. O

We now introduce the improved Beilinson—Flach class that we will use. For the remaining
of the section, we assume that Conjecture is true.

Definition 6.16. The improved weighted Beilinson—Flach class associated with the pair (g, h)
is the element

BF(f7 g, h) =VUf1 b2y Ep(gv h® 6f()k\g,h + Ufer ® Ep(gv h)k\g,h@)&‘;{
in Hl(@aV}ghk)'
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Let res,(R(f,g,h))™ " and resp(ﬁf‘(f, g, h))T™" be the images of res,(r(f,g,h)) and
res,(BF(f, g, h)), respectively, in H'(Q,, VfJr ® Vg@VI(Q —t1)lc).
Theorem 6.17. The equality
Q- Lign (vesy(R(f,8,0))777)? = Ay, (8) - Lign' (resy(BF(f,g,h)) ")
holds.

Proof. The result follows as in Theorem [5.18] working in this case with the improved Perrin-
Riou maps. O

Proposition 6.18. Assume that H'(Q, V}ghk;z\is a torsion-free Oc-module and Hp ,, (Q, V}gh)
is a torsion-free Agn-module of rank 1. Then BF(f, g, h) belongs to Héal(Q,V}ghk) and
/\g ~ —~
Qf,’y ' gp (fv g, h) ' %(f7g7 h) = )‘Ng(g) : BF(fvgv h)
Proof. By Corollary [5.19] we have

3 —
(1= w2 ) 0y Z b

3
W) v, ) BF (. )

ap(h)
ap(g)

=)

%&M—O—m@

Since Hl(Q,Vngh]c) is a torsion-free Oc-module and 1 — x4(p)
follows that

is non-zero in O¢, it

g N —
Qf,’Y'gp (fagah)’{(f7g)h):)\Ng(g)BF(fvgah)
In particular, since k(f, g, h) belongs to Hﬁal(Q, V}gh\c), the same is true for éf‘(f, g,h). O

Remark 6.19. As in Remark |5.20] we can ensure that both Hp, , (Q, V}gh) and H'(Q, V}gh|c)

are torsion-free by imposing the condition that H°(Q, ﬁT) =0, where p' is the residual repre-
sentation attached to V}gh.

Let R(f, gas ha) € Hi,(Q, Vngh) and BF(f, g, ha) € Hi . (Q, V}rgh) be the specializations
of the classes k(f,g,h) € Hﬁal(Q,V}gh\c) and BF(f,g,h) € HI(Q,V]}gh]c), respectively, at
the point (yo, 20).

Corollary 6.20. Assume that H'(Q, V}gh|c) z'f\a torsion-free Oc-module and Hg,, (Q, V}gh)
is a torsion-free Agn-module of rank 1. Then BF(f, ga, ha) belongs to HL,(Q, V;gh) and

51 -39 ~
)\Ng (g> ! BF(f: Ja, ha) = Qf,'y : gp (fa Ja, ha) ’ H(f: Ja, ha)-

Proof. This is an immediate consequence of the previous proposition. O
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