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Abstract. We present a comparison between the anticyclotomic Euler system of diagonal
cycles associated with the convolution of two modular forms and the cyclotomic Beilinson–
Flach Euler system. This extends the seminal work of Bertolini, Darmon, and Venerucci, who
established a link between (anticyclotomic) Heegner points and the Beilinson–Kato system.
Our approach hinges on a detailed analysis of p-adic L-functions and Perrin-Riou maps and
exploits the Eisenstein degeneration of diagonal cycles along Hida families, working with a
CM family which specializes to an irregular Eisenstein series in weight one. We use these
results to derive some arithmetic applications.
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1. Introduction

The recent work of Bertolini, Darmon, and Venerucci [BDV22] establishes a conjecture
relating Heegner cycles to Beilinson–Kato elements, linking both objects to p-adic families
of Beilinson–Flach elements in the higher Chow groups of products of two modular curves.
The comparison between Heegner points and Beilinson–Kato elements had previously been
investigated by Büyükkboduk [Buy16] and Venerucci [Ven16], within the framework of the
exceptional zero conjectures. In this work, we extend the results of [BDV22] by relating
Beilinson–Flach classes to the diagonal cycles studied in [BSV22b] and [DR22], which in turn
can be interpreted in terms of the anticyclotomic classes constructed in [ACR23b], [ACR23a],
and [CD23].

This work may also be interpreted in the context of the recent developments of Loeffler
and the third author [LR24], where they study the Eisenstein degeneration of Euler systems,
i.e. Euler systems obtained from critical Eisenstein series. Our setting, however, differs in a
significant way, since it involves as input a (non-cohomological) weight-one Eisenstein series.
We will return to this point throughout the text.

Following [BDP22], the central feature in the setting of irregular weight-one modular forms
attached to Dirichlet characters (χ1, χ2) with χ1(p) = χ2(p) is the existence of three (ordinary)
families passing through it: the families of Eisenstein series E(χ1, χ2) and E(χ2, χ1), as well
as a third Hida family that is generically cuspidal. The key idea, both in this note and in
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earlier related works, is the introduction of an auxiliary modular form that can be suitably
deformed along a Hida or Coleman family to produce the required Galois representation. In
this sense, the present work may be viewed as an instance of CM degeneration, while the work
of Loeffler and the third author provides an example of Eisenstein degeneration.

1.1. The set-up. Let p be an odd prime and fix once and for all an embedding ιp : Q −→ Qp

and an embedding ι : Q ↪→ C. The latter determines a choice of complex conjugation in GQ
which will be denoted by c.

Let K/Q be an imaginary quadratic field in which p splits and let εK be the quadratic
character attached to it. Let f be the CM Hida family introduced in §2.4, which specializes in
weight one to the irregular weight-one Eisenstein series f = Eis1(εK). Let (g,h) be a pair of
Hida families of coprime tame levels (Ng, Nh) and characters (χg, χh) such that χgχh = εKω2r

for some r ∈ Z. We also assume that g and h are residually irreducible and p-distinguished.
Let g = g◦

y0 and h = h◦
z0 be good crystalline specializations of g and h of weights l0 ≥ 2 and

m0 ≥ 1, respectively. We assume that p ∤ cond(h). Set c0 = (l0 +m0 − 1)/2.
In §2.2 we introduce our notations regarding Galois representations attached to families of

modular forms. In particular, attached to g (and similarly for f and h) there is a locally-free
rank-two module Vg, defined over a finite flat extension of Λ = Zp[[1 + pZp]] and equipped
with a continuous action of the absolute Galois group GQ.

1.2. Euler systems and p-adic L-functions. We now present the two cohomology class
that can naturally be attached to the triple (f,g,h). Firstly, the diagonal cycle class, which
may be understood as an anticyclotomic Euler system as discussed in [ACR23b]; secondly,
the cyclotomic system of Beilinson–Flach, as developed e.g. in [KLZ17].

(A) The work of Bertolini–Seveso–Venerucci [BSV22b] and Darmon–Rotger [DR22] pro-
vides us with a diagonal cycle class

κ(f ,g,h) ∈ H1
bal(Q,Vf ⊗̂Vg⊗̂Vh(2− t)),

where 2t = k + l +m. This class is constructed via the p-adic variation of diagonal
cycles, so it may be understood as a geometric object. By specilizing the first variable,
it yields a class κ(f,g,h) ∈ H1

bal(Q, Vf ⊗ Vg⊗̂Vh(2− t1)), where 2t1 = 1 + l+m.
(B) The work of Kings–Loeffler–Zerbes [KLZ17] provides us with a (cyclotomic) Beilinson–

Flach class

κg,h ∈ H1
bal(Q,Vg⊗̂Vh(2− t1))

attached to the pair (g,h), with the conventions that we later recall. Similarly, we
may consider a Beilinson–Flach class κg,h⊗εK attached to the families (g,h ⊗ εK),
where h⊗ εK denotes the twist of h by the quadratic character εK .

Note, however, that the construction of the Beilinson–Flach classes proceeds in an ostensibly
different way, since it involves working with modular units, which are absent in the theory
of diagonal cycles. Roughly speaking, the construction of diagonal cycles proceeds in purely
geometric terms, so the construction is amenable to be generalized to other settings where
there are no modular units (e.g. Shimura curves) and Beilinson–Flach classes are not available.

The main result of this note is a result connecting both classes. However, to ensure that
they live in the same space, one first defines a Beilinson–Flach class

BF(f,g,h) ∈ H1(Q, Vf ⊗ Vg⊗̂Vh(2− t1)),

obtained as a suitable weighted combination of κg,h and κg,h⊗εK . The intuition for that
comes from the observation that Vf ⊗ Vg⊗̂Vh(2 − t1) decomposes as the direct sum of the
Galois representations Vg⊗̂Vh(2− t1) and Vg⊗̂Vh(2− t1)(εK), and hence one can naturally
construct a cohomology class by gluing the Euler systems for each of the two pieces.
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The key point for developing a comparison of Euler systems comes through the theory of
p-adic L-functions. More precisely, the arithmetic of the Beilinson–Flach system is dictated
by the Hida–Rankin p-adic L-functions, which interpolate special values of the complex L-
function L(g ⊗ h, s). Similarly, diagonal cycles are related, via explicit reciprocity laws, with
the triple product p-adic L-function constructed by Hsieh [Hsi21], and later extended by
Andreatta–Iovita [AI21] to the non-ordinary case.

The main result of this note may be interpreted as a comparison between a cyclotomic and
an anticyclotomic cohomology class attached to the representation Vf ⊗ Vg⊗̂Vh(2 − t1). As

a piece of notation, we put V†
fgh = Vf ⊗ Vg⊗̂Vh(2 − t1) and V†

gh = Vg⊗̂Vh(2 − t1). Before

stating the theorem, we introduce the following objects; their precise definitions are recalled
in the main body of the article.

- The Selmer group H1
G∪+(Q,V†

fgh), corresponding to a certain local condition at p.

This is defined in §5.3, and it is a module over Λgh = Λg⊗̂Λh, where Λg (resp. Λh) is
the Iwasawa algebra over which the Hida family g (resp. h) is defined.

- The Selmer group H1
bal(Q,V†

fgh), corresponding to the balanced local condition at p.

- The Atkin–Lehner pseudo-eigenvalue λNg(g).
- The p-adic period Ωf,γ , depending on the choice of the isomorphism γ of (2.1).
- The triple product p-adic L-function Lp

g(f ,g,h), interpolating central values of the
corresponding triple product complex L-functions along the g-unbalanced region. In
this case, Lp

g(f,g,h) corresponds to specializing f at f .

In the course of developing the theory and proving the results of this work, we impose a
non-vanishing assumption on Lp

g(f,g,h); see Assumption 5.3.

Theorem 1.1. Assume that H1
G∪+(Q,V†

fgh) is a torsion-free Λgh-module of rank 1 and

that the p-adic L-function Lp
g(f,g,h) is not identically zero. Then BF(f,g,h) belongs to

H1
bal(Q,V†

fgh) and

λNg(g) · BF(f,g,h) = Ωf,γ · Lp
g(f,g,h) · κ(f,g,h).

Furthermore, the result may be also understood in the framework of the comparison between
different instances of Euler systems, developed e.g. in [LR24], but where one considers instead
CM families passing through a weight-one Eisenstein series, while in loc. cit. the key input
was the use of families passing through the critical p-stabilization of an Eisenstein series of
weight at least two.

Remark 1.2. Contrary to the situation in [BDV22], where Beilinson–Kato classes and Beilinson–
Flach elements were compared in Iwasawa cohomology, we are not working at that level here.
In our case, such a comparison is not possible, since the main result should be viewed as re-
lating a cyclotomic Euler system to an anticyclotomic one. Therefore, we restrict our analysis
to the bottom layers.

Remark 1.3. The slogan of this result may be summarized under the sentence Heegner points
are to Kato classes what anticyclotomic diagonal cycles are to Beilinson–Flach classes. Un-
fortunately, this setting remains much more mysterious in many instances, like the lack of a
proof of the Iwasawa main conjecture (only one divisibility is known).

The proof proceeds in three main steps.

(a) Compare the triple product p-adic L-function Lp
g(f,g,h) with the Hida–Rankin p-

adic L-functions attached to the pairs (g,h) and (g,h⊗ εK).
(b) Define the weighted Beilinson–Flach class and show that it satisfies the appropriate

local condition. This requires a careful analysis of the structure of the corresponding
Selmer groups.
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(c) Relate the two cohomology classes via the explicit reciprocity laws.

As a consequence of this result in families, we also obtain a comparison upon specializing
g and h; see §5.6 for details. Another corollary concerns a factorization of a certain big
logarithm, which can be applied to the Beilinson–Flach class. To state it, we introduce the
following objects:

- The triple product p-adic L-function of Hsieh [Hsi21] and [AI21], denoted Lp
f (f ,g,h),

attached to the triple (f ,g,h), where f is the CM family considered above. Its spe-

cialization at weight one in the first variable is denoted by Lp
f (f,g,h).

- The big-logarithm map Logωg⊗ωh
, introduced in Def. 5.27.

Corollary 1.4. Assume that H1
G∪+(Q,V†

fgh) is a torsion-free Λgh-module of rank 1 and

that the p-adic L-function Lp
g(f,g,h) is not identically zero. Then we have the following

factorization of the image of the Beilinson–Flach class under the Perrin-Riou map Logωg⊗ωh
:

Ωf,γ · Lp
g(f,g,h) · Lp

f (f,g,h) = λNg(g) · Logωg⊗ωh
(BF(f,g,h)).

1.3. Exceptional zeros. There is a case which is especially interesting from the point of
view of arithmetic applications, which corresponds to the following assumption.

Assumption 1.5. With the previous notations, it holds that

αgβh = p
l0+m0−3

2 .

Since g and h are p-ordinary and p ∤ cond(h), it follows from this assumption together with
the Ramanujan–Petersson conjecture that (l0,m0) = (2, 1) and that g has conductor Ngp.
Note that this situation includes in particular the case where g is the modular form attached
to an elliptic curve over Q with multiplicative reduction at p.

Hence, we encounter an arithmetic situation that is particularly intriguing, as two of the
Euler factors associated with the p-adic L-function vanish. In this setting, improved p-adic
L-functions are available, both in the Hida–Rankin case and for the triple product of modular
forms. However, the vanishing of these two Euler factors occurs for different reasons: one is
introduced by the big logarithm map, while the other arises from the interpolation in families
of Beilinson–Flach classes and diagonal cycles. To complete the picture, we therefore need to
(a) construct improved big logarithm maps, and (b) construct improved cohomology classes.
At this point, we rely on a standard conjecture in the theory of exceptional zeros to guarantee
the existence of the improved Beilinson–Flach class in this setting, while the improved diagonal
cycle class has already been constructed in [BSV22b].

As a piece of notation for the next proposition, we use the following terminology.

- The line C corresponds to the points in the pair of families with weights of the form
(l, l − 1); see §6 for the precise definition.

- The triple-product improved p-adic L-function, introduced in Theorem 6.4, is denoted

by L̂p
g
(f,g,h).

- The improved diagonal cycle of [BSV22b] is denoted by κ̂(f,g,h).

- The (still conjectural) improved Beilinson–Flach class is denoted by B̂F(f,g,h).

Theorem 1.6. Assume that H1(Q,V†
fgh|C) is a torsion-free OC-module, H1

G∪+(Q,V†
fgh) is a

torsion-free Λgh-module of rank 1 and Lp
g(f,g,h) is not identically zero. Then B̂F(f,g,h)

belongs to the Selmer group H1
bal(Q,V†

fgh|C) and

Ωf,γ · L̂p
g
(f,g,h) · κ̂(f,g,h) = λNg(g) · B̂F(f,g,h).

The proof follows the same ideas as in the non-exceptional case, but requires certain modi-
fications to account for the improved setting. In particular, one needs to work with improved
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big logarithms, since in this situation the Euler factor in the numerator of the Perrin-Riou
map vanishes at the point corresponding to the pair (g, h).

1.4. Related works. This project, together with [BDV22], provides an example of how two
distinct types of Euler systems can be related through a CM degeneration technique. We now
highlight its connections with other analogous phenomena:

(1) Critical Eisenstein series. In [LR24] and [PR25], the authors study Euler systems
in families where one of the modular forms passes through a point corresponding to the
critical-slope p-stabilization of an Eisenstein series. In these cases, the specialization
of the associated Galois representation admits a projection onto a one-dimensional
quotient, allowing for a direct comparison with a smaller Euler system.

(2) Irregular Euler systems. The degeneration technique used in this work, inspired
by [BSV22b], considers a CM family intersecting an irregular weight-one Eisenstein
series. This can be viewed as a CM degeneration, in which the Euler system in families
decomposes into a sum of two distinct Euler systems, each associated with a different
component of the CM representation. In both situations, the key idea is the same: to
exploit a cuspidal Hida or Coleman family which, at a certain point, specializes to an
Eisenstein series.

(3) (Eisenstein) congruences among modular forms. Instead of working inside a
family, one may also consider an Euler system attached to a cuspidal modular form
that satisfies a congruence relation with an Eisenstein series. In this setting, similar
connections to those described in (1) can be established.
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cussions related to the subject of this work. We also thank Kâzım Büyükboduk for many
insightful comments and suggestions. The third-named author further thanks David Loeffler
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2. Preliminaries

Along this section we recall the main properties about the Galois representations attached
to modular forms and families which are needed along this work. Further, we state the
assumptions which are needed to guarantee the étaleness of the Coleman–Mazur–Buzzard
eigencurve around a classical point, following the seminal works of [BD16] and [BDP22]. This
has a special relevance in our study, since we are going to consider a family passing through
an irregular weight-one Eisenstein series.

Let p > 2 be a prime and fix once and for all an embedding ιp : Q −→ Qp and an embedding

ι : Q ↪→ C. The latter determines a choice of complex conjugation in GQ which will be
denoted by c.

2.1. Deligne representations. Let ξ =
∑∞

n=1 an(ξ)q
n ∈ Sk(Nξ, χξ) be a normalized new-

form of weight k ≥ 2, level Nξ, and nebentypus χξ. Let L be a finite extension of Qp

containing the Fourier coefficients of ξ (under the embedding ιp fixed above) and let O be the
ring of integers of L. By work of Eichler–Shimura and Deligne, there is a two-dimensional
representation

ρξ : GQ −→ GLL(Vξ) ≃ GL2(L)
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unramified outside pNξ and characterized by the property

trace ρξ(Frq) = aq(ξ)

for all primes q ∤ pNξ, where Frq denotes an arithmetic Frobenius element at q. Let Y1(Nξ)
be the open modular curve over Q parameterizing pairs (A,P ) consisting of an elliptic curve
A and a point P ∈ A of order Nξ. Let Lk−2 be the p-adic sheaf over Y1(Nξ) introduced in
[BSV22b, §2.3]. We shall work with the geometric realization of Vξ arising as the maximal
quotient of

H1
et(Y1(Nξ)Q,Lk−2(1))⊗Zp L

on which the dual Hecke operators T ′
q and ⟨d⟩′ act as multiplication by aq(ξ) and χξ(d) for all

primes q ∤ Nξ and all d ∈ (Z/NξZ)×.
If ξ is p-ordinary, then we have a filtration

0 → V +
ξ → Vξ → V −

ξ → 0

of GQp-representations, where V ±
ξ are 1-dimensional and V −

ξ is unramified with Frp acting as

multiplication by the unit root of the p-th Hecke polynomial of ξ.

2.2. Hida families and big Galois representations. In this subsection, we recall the
fundamental concepts and main notations related to Hida families that will appear in this
work.

Let Λ = Zp[[1 + pZp]]. Given an integer r and a finite-order character ϵ : 1 + pZp → Q×
p ,

we define the character νr,ϵ : 1 + pZp → Q×
p by νr,ϵ(z) = zrϵ(z). This character extends

to a ring homomorphism Pr,ϵ : Λ → Qp, and we will use the same notation Pr,ϵ to denote

the corresponding point in Spec(Λ)(Qp). Points in Spec(Λ)(Qp) of this form will be called
arithmetic points, and the set of such points will be denoted byW. Given a finite flat extension
R of Λ, we say that a point x ∈ Spec(R)(Qp) is arithmetic if it lies above an arithmetic point

Pr,ϵ ∈ Spec(Λ)(Qp). In this case, we refer to kx = r + 2 as the weight of x.

Let N be a positive integer coprime to p and let χ : (Z/NpZ)× → Q×
be a Dirichlet

character. A Hida family of tame level N and character χ is a formal q-expansion

ξ =
∑
n≥1

an(ξ)q
n ∈ Λξ[[q]]

with coefficients in a normal domain Λξ finite flat over Λ such that for every arithmetic

point x ∈ Spec(Λξ)(Qp) lying above some Pr,ϵ with r ≥ 0 the corresponding specialization ξx
is a p-ordinary eigenform in Sr+2(Nps, χϵω−r), where s = max{1, ordp(cond(ϵ)}. We define
Oξ = Λξ[1/p]. We set Uξ = Spec(Λξ) and Uξ = Spec(Oξ) and we denote by κξ : Uξ → Spec(Λ)
the homomorphism corresponding to the inclusion Λ ↪−→ Λξ. We denote by Wξ the set of

arithmetic points in Uξ(Qp). We say that an arithmetic point x ∈ Wξ of weight kx ≥ 1 is
classical if the corresponding specialization ξx is a classical modular form (which is always
the case if kx ≥ 2). In this case ξx is a p-stabilized newform. If ξx is the p-stabilization of a
newform of level N , we denote the latter by ξ◦x. Otherwise, we write ξ◦x = ξx. We note that,
if kx > 2, then ξx is always p-old.

Attached to a Hida family ξ there is a locally-free rank-two Λξ-module Vξ equipped with
a continuous action of GQ such that for any arithmetic point x ∈ Wξ of weight kx ≥ 2 the

specialization Vξ ⊗Λξ,x Qp recovers the GQ-representation Vξ◦x attached to ξ◦x. We call Vξ the
big Galois representation attached to ξ. As a GQp-representation, Vξ admits a filtration

0 → V+
ξ → Vξ → V−

ξ → 0,

where V+
ξ is a free rank-one Λξ-module, V−

ξ is a locally-free rank-one Λξ-module, and the GQp-

action on V−
ξ is unramified with Frp acting as multiplication by ap(ξ). For any arithmetic
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point x ∈ Wξ of weight kx ≥ 2, the corresponding specialization of the exact sequence above
recovers the filtration

0 → V +
ξ◦x

→ Vξ◦x → V −
ξ◦x

→ 0.

Moreover, if ξ is residually irreducible and p-distinguished, then the Λξ-modules Vξ and V−
ξ

are free.

2.3. The Coleman–Mazur eigencurve. Let ξ be a Hida family of tame level Nξ and
character χξ. Let x ∈ Wξ be a classical point of weight kx ≥ 1. We say that x is a crystalline
point if ξx has nebentypus of conductor coprime to p. We say that x is a good point if in
addition any of the following conditions holds:

(a) kx ≥ 2;
(b) kx = 1 and ξx is a p-stabilisation of a classical p-regular cuspidal weight-one newform

of level Nξ without real multiplication by a real quadratic field F where the prime p
splits;

(c) kx = 1 and ξx is the p-stabilisation of a p-irregular weight-one Eisenstein series of
conductor Nξ.

Note that these conditions imply in particular that ξx is an étale point of the cuspidal
Coleman–Mazur–Buzzard p-adic eigencurve of tame level Nξ. When (a) holds, this follows
from the work of Hida and Coleman (see, e.g. [Bel12]); when (b) holds, this is proved in
[BD16]; when (c) holds, it is proved in [BDP22].

If x ∈ Wξ is a good point of weight 1, then it follows from [BDV22, Prop. 2.2] that

Vξ⊗Λξ,xQp recovers the Deligne–Serre Artin representation Vξ◦x attached to ξ◦x. In particular,
this allows us to obtain a filtration

0 → V +
ξ◦x

→ Vξ◦x → V −
ξ◦x

→ 0

for Vξ◦x as a GQp-representation by specializing the filtration

0 → V+
ξ → Vξ → V−

ξ → 0

at the point x.

2.4. Irregular weight-one Eisenstein series. Let K be an imaginary quadratic field of
discriminant −dK in which p splits. Write pOK = pp̄, with p the prime of OK corresponding
to the fixed embedding ιp : Q ↪→ Qp. Let εK stand for the quadratic character attached to
the imaginary quadratic field K. In particular, for any prime q ∤ dK , we have εK(q) = +1 if
q splits in K and εK(q) = −1 if q is inert in K.

Definition 2.1. The weight-one Eisenstein series of character εK is the weight-one modular
form given by the Fourier expansion

Eis1(εK) =
1

2
L(εK , 0) +

∑
n≥1

qn
∑
d|n

εK(d) ∈ M1(−dK , εK).

It has level Γ1(−dK) and character εK .

We will write f = Eis1(εK). Note that the eigenform f is a p-irregular modular form, i.e.,
its p-th Hecke polynomial, given by X2 − 2X + 1, has a double root. Define

fα = f(q)− f(qp) ∈ M1(−pdK , εK)

as the unique p-stabilisation of f .
A result of Betina, Dimitrov and Pozzi [Poz19], [BDP22] extending the prior work of

Belläıche and Dimitrov [BD16], establishes the following.
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Proposition 2.2. The eigenform fα is an étale point of the cuspidal Coleman–Mazur eigen-
curve. In particular, there exists a unique (up to conjugation) Hida family f of tame level −dK
and tame character χf = εK passing through fα. Moreover, the Hida family f has complex
multiplication by K.

Proof. This is [BDP22, Thm. A]. □

Remark 2.3. Similar results exist if we consider instead the Eisenstein series Eis1(χ1, χ2εK),
with χ1 and χ2 Dirichlet characters of prime-to-p conductors N1 and N2 with χ1(p) = χ2(p).
In that case, one would need to define fα as

fα = Eis1(εK)(q)− χ1(p) Eis1(εK)(qp) ∈ M1(−pdKN1N2, εKχ1χ2).

Let Kp
∞ be the Zp-extension of K unramified away from p. Let Γp = Gal (Kp

∞/K) and let

Λf = O[[Γp]]. Let recK : A×
K → Gab

K denote the (arithmetically normalized) global reciprocity

map and let Θp denote the composition of recK with the canonical projection Gab
K ↠ Γp. Let

recK,p : K
×
p → Gab

Kp
denote the (arithmetically normalized) local reciprocity map. We identify

GKp with the decomposition group above p determined by our fixed embedding Q ↪→ Qp, and

thus we regard GKp as a subgroup of GK . Thus we obtain a homomorphism Gab
Kp

→ Gab
K ↠ Γp

(which is surjective if p ∤ hK) and we define θp : K×
p → Γp as the composition of recK,p with

this homomorphism. The character 1 + pZp → Λ×
f defined by z 7→ z−1θp(z) extends to an

embedding Λ ↪→ Λf , whereby Λf becomes a finite flat extension of Λ. For each non-zero
fractional ideal a of K, let xa ∈ A×

K,f be a finite idèle with ordw(xa,w) = ordw(a) at each finite

place w with ordw(a) ̸= 0 and xa,w = 1 for all other places w. Then, the Hida family f is
given by

f =
∑

a⊆OK , p∤a

Θp(xa)q
NK/Q(a) ∈ Λf [[q]].

The specialization of f at the point x0 ∈ Wf corresponding to the trivial character of Γp

recovers the modular form fα.
Let φ : GK ↠ Γp denote the canonical projection. Then, we have the following result.

Proposition 2.4. The Λf [GQ]-modules Vf and IndQK Λf (φ) are isomorphic.

Proof. This is [BSTW24, Thm. 1.21]. □

Fix once and for all an isomorphism of Λf [GQ]-modules

(2.1) γ : Vf
∼= IndQK φ.

This isomorphism is not canonical, so the next decompositions will depend on this choice.

Since p splits in K, the restrictions of IndQK φ to GK and GQp decompose as the direct sum
of φ and its complex conjugate φc. Note that the character φc|GQp

is unramified and maps

the arithmetic Frobenius Frp to the p-th Fourier coefficient ap(f) = Θ(xp̄) of f . Therefore, the
restriction of Vf to GQp decomposes

Vf = V+
f ⊕ V−

f , with γ(V+
f ) = Λf (φ|GQp

) and γ(V−
f ) = Λf (φ

c|GQp
).

Recall that the specialization Vf ⊗Λf ,x0 L recovers the Deligne–Serre Artin representation

Vf . Setting, as before, V ±
f = V±

f ⊗Λf ,x0 L, we have a decomposition Vf = V +
f ⊕ V −

f of

GQp-representations. Also, specializing the isomorphism γ at x0, we obtain an isomorphism

γ : Vf
∼= L(1)⊕ L(εK)

of L[GQ]-modules.
Let v+ and v− be the canonical Λf -bases of the GK-submodules Λf (φ) and Λf (φ

c) of

IndQK Λf (φ), respectively. The maps v± : GQ → Λf are determined by (v+(1),v+(c)) = (1, 0)
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and (v−(1),v−(c)) = (0, 1), where c denotes our fixed choice of complex conjugation. Set
v±
f = γ−1(v±) in V±

f , let v
±
f in V ±

f be their specializations at x0 and define

vf,1 = v+f + v−f , vf,εK = v+f − v−f .

Note that c exchanges the vectors v+ and v−, and therefore the elements γ(vf,1) and γ(vf,εK )
give bases of the GQ-representations L(1) and L(εK), respectively. These choices of vectors
will be used later on.

3. p-adic L-functions

Let (g,h) be a pair of cuspidal Hida families and let f be the Hida family introduced in §2.4.
This work relies on the comparison between the Hida–Rankin p-adic L-function Lp(g,h) and
the triple product p-adic L-function Lp(f ,g,h). In this section we introduce these objects.

3.1. Hida–Rankin p-adic L-function. Here we introduce the three-variable Hida–Rankin
p-adic L-function. We follow mainly the exposition in [KLZ17].

Let (g,h) be a pair of cuspidal Hida families of tame levels (Ng, Nh) and characters (χg, χh).
We make the following assumption.

Assumption 3.1. gcd(Ng, Nh) = 1.

Put Wghs := Wg ×Wh×W. For ϕ ∈ {g,h}, let W◦
ϕ denote the subset of crystalline points

in Wϕ. Also, fix an integer s0 and define

W◦ = {Ps,1 ∈ W | s ≡ s0 (mod p− 1)}.
In an abuse of notation, a point Ps,1 ∈ W◦ might be denoted simply by s.

Let (y0, z0) ∈ W◦
g × W◦

h be a good crystalline point with corresponding weights (l0,m0)
satisfying l0 ≥ 2, m0 ≥ 1. We define

Wcl
g := {y ∈ W◦

g | ky ≥ 2};

Wcl
h := {z ∈ W◦

h | kz ≥ 2} ∪ {z0}.

Note that, for ϕ ∈ {g,h}, the specialization of ϕ at a point in Wcl
ϕ is a classical p-stabilized

newform. For each x ∈ Wcl
ϕ , we define αϕx

:= ap(ϕx) and βϕx
:= χϕx(p)p

kx−1α−1
ϕx

. Note that,

if kx ≥ 2, then αϕx is the unit root of the p-th Hecke polynomial of ϕ◦
x.

Let Wcl
ghs = Wcl

g × Wcl
h × W◦ and let Wg

ghs denote the subset of points (y, z, s) ∈ Wcl
ghs

of weights (ky, kz) = (l,m) satisfying m ≤ s < l. This is the range of interpolation for the
three-variable Rankin p-adic L-function Lp(g,h, s) introduced below. Similarly, we define

Wh
ghs as the subset of points (y, z, s) ∈ Wcl

ghs of weights (ky, kz) = (l,m) satisfying l ≤ s < m.

Note that both Wg
ghs and Wh

ghs exclude points with l = m. Set Λghs = Λg⊗̂OΛh⊗̂ZpΛ and

Oghs = Λhgs[1/p]. Let Ig ⊆ Λg be the congruence ideal of g and let Ih ⊆ Λh be the congruence
ideal of h.

Hida constructed in [Hid85] and [Hid88] a three-variable p-adic Rankin L-function Lp(g,h, s)
in I−1

g Oghs interpolating the algebraic parts of the critical values L(g
◦
y,h

◦
z, s) for every triple of

critical points (y, z, s) in Wg
ghs. The following formulation is taken from [KLZ17, Thm. 7.7.2].

Theorem 3.2. (Hida) There exists a p-adic L-function

Lp(g,h, s) ∈ I−1
g Oghs

such that for every (y, z, s) ∈ Wg
gh of weights (ky, kz) = (l,m) with p ∤ cond(gy) · cond(hz) we

have

Lp(g,h, s)(y, z, s) =
E(y, z, s)
E0(y)E1(y)

Γ(s)Γ(s−m+ 1)

π2s−m+1(−i)l−m22s+l−m⟨g◦
y,g

◦
y⟩

× L(g◦
y,h

◦
z, s)
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where ⟨g◦
y,g

◦
y⟩ is the Petersson norm as normalized in [KLZ17] and the Euler factors are

defined by

E0(y) := 1− χ−1
g (p)β2

gy
p1−l,

E1(y) := 1− χg(p)α
−2
gy

pl−2,

E(y, z, s) :=
(
1− ps−1

αgyαhz

)(
1− ps−1

αgyβhz

)(
1−

βgyαhz

ps

)(
1−

βgyβhz

ps

)
.(3.1)

Remark 3.3. Similarly, there is a p-adic L-function Lp(h,g, s) ∈ I−1
h Oghs interpolating the

Rankin–Selberg L-values in the region Wh
ghs. Note that the p-adic L-functions Lp(g,h, s) and

Lp(h,g, s) are different.

This construction was later generalized by Urban to the case where the modular forms are
not necessarily ordinary [Urb14], [AI21, App.], using nearly overconvergent modular forms
of finite order and their spectral theory. In this case, the interpolation property does not
completely determine the p-adic L-function, and one needs to impose further conditions.

3.2. Triple product p-adic L-function. Let (f ,g,h) be a triple of Hida families of tame
levels (Nf , Ng, Nh) and characters (χf , χg, χh). In this section, we introduce the three-variable
p-adic L-function interpolating the central values of the triple product L-functions associated
with classical specializations of (f ,g,h) in the g-dominant region.

Put Wfgh := Wf × Wg × Wh. For ϕ ∈ {f ,g,h}, let W◦
ϕ denote the subset of crystalline

points in Wϕ and put W◦
fgh = W◦

f ×W◦
g×W◦

h ⊆ Wfgh. Let w0 = (x0, y0, z0) ∈ W◦
fgh be a good

crystalline point with corresponding weights (k0, l0,m0) satisfying k0 + l0 +m0 ≡ 0 (mod 2),
k0,m0 ≥ 1, l0 ≥ 2. Put (f, g, h) := (f◦x0

,g◦
y0 ,h

◦
z0). Note that (f, g, h) is a triple of p-stabilized

newforms with characters (χf , χg, χh) = (χ
(p)
f , χ

(p)
g , χ

(p)
h ), where χ(p) stands for the prime-to-p

part of the character χ.
We make the following assumption.

Assumption 3.4.

(1) gcd(Nf , Ng, Nh) is square-free;
(2) χfχgχh = 1;
(3) the residual representation ρ̄g is absolutely irreducible and p-distinguished.

Put Vfgh := Vf ⊗L Vg ⊗L Vh. Then Vfgh is a GQ-representation of dimension 8 over L.

Moreover, putting c0 := (k0 + l0 +m0 − 2)/2, the twisted representation V †
fgh := Vfgh(1− c0)

is Kummer self-dual, i.e., (V †
fgh)

∨ ≃ V †
fgh(1).

We now add the following assumption.

Assumption 3.5. For all prime ℓ | NfNgNh, ϵℓ(V
†
fgh) = +1.

We define

W̃cl
f := {x ∈ W◦

f | kx ≥ 2 and kx ≡ k0 (mod 2(p− 1))} ∪ {x0};

W̃cl
g := {y ∈ W◦

g | ky ≥ 2 and ky ≡ l0 (mod 2(p− 1))};

W̃cl
h := {z ∈ W◦

h | kz ≥ 2 and kz ≡ m0 (mod 2(p− 1))} ∪ {z0}.

Note that, for ϕ ∈ {f ,g,h}, the specialization of ϕ at a point in W̃cl
ϕ is a classical p-stabilized

newform. For each x ∈ W̃cl
ϕ , we define αϕx

:= ap(ϕx) and βϕx
:= χϕx(p)p

kx−1α−1
ϕx

. Note that,

if kx ≥ 2, then αϕx is the unit root of the p-th Hecke polynomial of ϕ◦
x.

Put Wcl
fgh = W̃f

cl × W̃cl
g × W̃cl

h . This set admits the natural partition

Wcl
fgh = Wf

fgh ⊔Wg
fgh ⊔Wh

fgh ⊔Wbal
fgh,
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where

• Wg
fgh denotes the set of points (x, y, z) ∈ Wcl

fgh of weights (k, l,m) such that l ≥ k+m;

• Wf
fgh (resp. Wh

fgh) is defined similarly, replacing the role of g by f (resp. h);

• Wbal
fgh is the set of balanced triples, consisting of points (x, y, z) ∈ Wcl

fgh of weights

(k, l,m) such that each of the weights is strictly smaller than the sum of the other
two.

Set Λfgh = Λf ⊗̂OΛg⊗̂OΛh and Ofgh = Λfgh[1/p]. Let Ig ⊆ Λg be the congruence ideal of g.
In [DR14], Darmon and Rotger constructed a triple product p-adic L-function interpolating

the square roots of the central values of the triple product L-functions associated with classical
specializations of (f ,g,h) in Wg

fgh. The precise interpolation formula given below is due to

Hsieh [Hsi21]

Theorem 3.6. (Darmon–Rotger, Hsieh) There exists a p-adic L-function

Lp
g(f ,g,h) ∈ I−1

g Ofgh

such that for every (x, y, z) ∈ Wg
fgh of weights (k, l,m) with p ∤ cond(fx) · cond(gy) · cond(hz)

we have

Lp
g(f ,g,h)2(x, y, z) =

a(k, l,m)

⟨g◦
y,g

◦
y⟩2

· e2(x, y, z) · L(f◦x ,g◦
y,h

◦
z, c),

where

(1) c = k+l+m−2
2 ,

(2) a(k, l,m) = (2πi)−2(l−2) ·
(
k+l+m−4

2

)
! ·
(
−k+l+m−2

2

)
! ·
(
k+l−m−2

2

)
! ·
(
−k+l−m

2

)
!,

(3) e(x, y, z) = E(x, y, z)/E0(x)E1(x) with

E0(y) := 1− χ−1
g (p)β2

gy
p1−l,

E1(y) := 1− χg(p)α
−2
gy

pl−2,

E(x, y, z) :=
(
1− χg(p)αfxα

−1
gy

αhzp
−k+l−m

2

)
×
(
1− χg(p)αfxα

−1
gy

βhzp
−k+l−m

2

)
×
(
1− χg(p)βfxα

−1
gy

αhzp
−k+l−m

2

)
×
(
1− χg(p)βfxα

−1
gy

βhzp
−k+l−m

2

)
.

Remark 3.7. To be precise, each choice of test vectors (f̆ , ğ, h̆) for (f ,g,h) determines a

p-adic L-function Lp
g(f̆ , ğ, h̆), and Hsieh shows that there exists an optimal choice of test

vectors (f̆∗, ğ∗, h̆∗) for which the p-adic L-function Lp
g(f̆∗, ğ∗, h̆∗), which we denote simply

by Lp
g(f ,g,h), satisfies the precise interpolation formula given above. Using these same

test vectors, one can also define p-adic L-functions Lp
f (f ,g,h) and Lp

h(f ,g,h) interpolating

square roots of classical L-values in the regions Wf
fgh and Wh

fgh, respectively. Note that our

choice of test vectors might not be optimal for these regions, so Lp
f (f ,g,h) and Lp

h(f ,g,h)
might not precisely satisfy an interpolation formula analogous to the one above. However,
if gcd(Ng, Nh) = 1, g and h are residually irreducible and p-distinguished, and f is the CM
Hida family introduced in §2.4, which is the situation that we will consider, then it follows
from [Hsi21] that one can choose test vectors which are optimal for both Wg

fgh and Wh
fgh.

4. Families of cohomology classes

In this section we introduce the two kinds of cohomology classes that are involved in our
comparison, together with the corresponding reciprocity laws connecting them with the p-adic
L-functions introduced in the previous section.

The cohomology classes introduced in this section are the following:
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(a) the Beilinson–Flach classes attached to a pair of Hida families (g,h) constructed in
[KLZ17];

(b) the diagonal cycles attached to a triple of Hida families (f ,g,h) constructed in [BSV22b]
and [DR22].

4.1. Beilinson–Flach classes. We use the notations and assumptions introduced in §3.1.
In particular, (g,h) is a pair of Hida families of tame levels (Ng, Nh) and characters (χg, χh).
We also make the following assumption.

Assumption 4.1. The Hida families g and h are residually irreducible and p-distinguished.

Let s : Z×
p → Λ× be the character defined by z 7→ ωs0(z)[⟨z⟩], where ⟨z⟩ = ω−1(z)z and

[⟨z⟩] denotes the corresponding group-like element. Note that the specialization of s at a
point Ps,1 ∈ W◦ is the character z 7→ zs. We denote by l : Z×

p → Λ×
g the weight character

of g, defined by z 7→ χg,p(z)z
2[⟨z⟩]Λg . Note that the specialization of l at a crystalline point

y ∈ W◦
g of weight l is the character z 7→ zl. Similarly, we denote by m : Z×

p → Λ×
h the weight

character of h, defined by z 7→ χh,p(z)z
2[⟨z⟩]Λh

.
Given specializations gy and hz, we denote by ηαgy

and ωhz the associated differentials

as defined in [KLZ17, §3]. As shown in [KLZ17, §10], one can define objects ηg and ωh

interpolating these differentials.
We first introduce a Perrin-Riou logarithm that will be used for the formulation of an

explicit reciprocity law.

Proposition 4.2. There exists a homomorphism of Λghs-modules

L−+
ghs : H

1(Qp,V−
g ⊗̂V+

h ⊗̂Λ(1− s)) → I−1
g I−1Oghs,

where I is the augmentation ideal of Λ, such that for every point (y, z, s) ∈ Wcl
ghs of weights

(ky, kz) = (l,m) with αgyβhz ̸= ps the specialization of L−+
ghs at (y, z, s) is the homomorphism

L−+
ghs(y, z, s) : H

1(Qp, V
−
gy

⊗ V +
hz
(1− s)) → Cp

given by

L−+
ghs(y, z, s) =

1− ps−1α−1
gy

β−1
hz

1− p−sαgyβhz

×

{
(−1)m−s−1

(m−s−1)! × ⟨logBK(·), ηαgy
⊗ ωhz⟩ if s < m

(s−m)!× ⟨exp∗BK(·), ηαgy
⊗ ωhz⟩ if s ≥ m,

where logBK is the Bloch–Kato logarithm and exp∗BK is the dual exponential map.

Proof. This follows from [KLZ17, Theorem 8.2.8, Proposition 10.1.1]. □

Remark 4.3. We recall that the map in the previous theorem is obtained as the composition

L−+
ghs = ⟨log−+

ghs(·),ηg ⊗ ωh⟩,

where log−+
ghs(·) is the Perrin–Riou big logarithm introduced in [KLZ17, Theorem 8.2.8].

Remark 4.4. Interchanging the roles of g and h, we also have a map

L+−
ghs : H

1(Qp,V+
g ⊗̂V−

h ⊗̂Λ(1− s)) → I−1
h I−1Oghs,

with analogous interpolation properties.

We also recall the following result.

Proposition 4.5. The inclusion V+
h ↪−→ Vh induces an injection

H1(Qp,V−
g ⊗̂V+

h ⊗̂Λ(1− s)) ↪−→ H1(Qp,V−
g ⊗̂Vh⊗̂Λ(1− s))

Proof. This is part of [KLZ17, Prop. 8.1.7]. □
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Remark 4.6. By the previous proposition, we can regard the moduleH1(Qp,V−
g ⊗̂V+

h ⊗̂Λ(1−s))

as a submodule of H1(Qp,V−
g ⊗̂Vh⊗̂Λ(1 − s)). Similarly, we can also regard the module

H1(Qp,V+
g ⊗̂V−

h ⊗̂Λ(1− s)) as a submodule of H1(Qp,Vg⊗̂V−
h ⊗̂Λ(1− s)).

To shorten notation, put Vghs = Vg⊗̂Vh⊗̂Λ(1− s). Let F 2Vghs ⊂ Vghs be the GQp-stable
Λghs-submodule of rank 3 defined by

F 2Vghs = (V+
g ⊗̂Vh + Vg⊗̂V+

h )⊗̂Λ(1− s).

Fix a finite set Σ of places of Q containing ∞ and the primes dividing NgNhp and let QΣ be
the maximal extension of Q unramified outside Σ.

Definition 4.7. The balanced Selmer group of Vghs is defined by

H1
bal(Q,Vghs) = ker

(
H1(QΣ/Q,Vghs) −→

H1(Qp,Vghs)

H1
bal(Qp,Vghs)

)
,

where

H1
bal(Qp,Vghs) = ker

(
H1(Qp,Vghs) −→ H1(Qp,Vghs/F

2Vghs)
)
.

Let pr−+ : H1
bal(Qp,Vghs) → H1(Qp,V−

g ⊗̂V+
h ⊗̂Λ(1−s)) be the map induced by the natural

projection F 2Vghs → V−
g ⊗̂V+

h ⊗̂Λ(1− s) and let

Lg
ghs : H

1
bal(Q,Vghs) −→ I−1

g I−1Oghs

be the map defined by Lg
ghs = L−+

ghs ◦ pr
−+ ◦ resp. Similarly we define Lh

ghs.

The construction of Beilinson–Flach classes was first carried out by Lei–Loeffler–Zerbes for
fixed modular forms (g, h) of weight two [LLZ14], and was later extended to Hida families
(g,h) in [KLZ20]. Later, in [LZ16], the construction was extended to the Coleman case; as
discussed e.g. in [LR24] there are situations where one must be more cautious and there may
be some poles, for instance, at the critical p-stabilization of an Eisenstein series. However, in
the setting considered in this note we will not deal with this kind of issues.

Recall that, given a newform ξ of level Nξ, its image under the Atkin–Lehner operator
WNξ

is a scalar multiple of the conjugate eigenform ξ∗. Then, we define the Atkin–Lehner
pseudo-eigenvalue λNξ

(ξ) of ξ by WNξ
(ξ) = λN (ξ)ξ∗. As explained in [KLZ17, §10], given

a Hida family ξ of tame level Nξ, there exists an element λNξ
(ξ) ∈ O×

ξ interpolating the

Atkin–Lehner pseudo-eigenvalues of the crystalline specializations of ξ.
We now state the main result of [KLZ17].

Theorem 4.8. Fix an integer c > 1 relatively prime to 6pNgNh. Then, there exists a global
cohomology class

cκ(g,h, s) ∈ H1
bal(Q,Vg⊗̂Vh⊗̂Λ(1− s))

such that

Lg
ghs(cκ(g,h, s)) =

(−1)s

λNg(g)
· (c2 − c2s−l−m+2χ

(p)
g (c)−1χ

(p)
h (c)−1)× Lp(g,h, s)

and

Lh
ghs(cκ(g,h, s)) =

(−1)s

λNh
(h)

· (c2 − c2s−l−m+2χ
(p)
g (c)−1χ

(p)
h (c)−1)× Lp(h,g, s).

Proof. The global cohomology class cκ(g,h, s) is introduced in [KLZ17, Definition 8.1.1]. The
result follows from [KLZ17, Proposition 8.1.7] and [KLZ17, Theorem B]. □
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Remark 4.9. After tensoring with Frac(Oghs), the class

κ(g,h, s) := C−1
c ⊗ cκ(g,h, s)

is independent of c, where

(4.1) Cc(g,h, s) := c2 − c(2s−l−m+2)χ
(p)
g (c)−1χ

(p)
h (c)−1.

4.2. Diagonal cycles. In this section, we recall the main results regarding the existence of
p-adic families of diagonal cycles obtained in [DR22] and [BSV22a] building on the previous
geometric constructions of [DR17].

We use the notations and assumptions introduced in §3.2. In particular, (f ,g,h) is a
triple of Hida families of tame levels (Nf , Ng, Ng) and characters (χf , χg, χh) and (f, g, h) =
(f◦x0

,g◦
y0 ,h

◦
z0) is a triple of good crystalline specializations of characters (χf , χg, χh) and

weights (k0, l0,m0) with k0 + l0 +m0 ≡ 0 (mod 2). We denote by k : Z×
p → Λ×

f , l : Z
×
p → Λ×

g

and m : Z×
p → Λ×

h the corresponding tautological weight characters.

The running assumptions imply that χfχgχh = ω2r for some r ∈ Z, where ω denotes the
Teichmüller character. Thus we can choose a character t : Z×

p → Λ×
fgh = (Λf ⊗̂Λg⊗̂Λh)

×

satisfying 2t = k+ l+m. There are two choices for t, and we choose the one determined by
imposing that the specialization of t at the fixed crystalline point (x0, y0, z0) is the character

ε
(k0+l0+m0)/2
cyc . We also make the following assumption.

Assumption 4.10.

(i) The Hida families g and h are residually irreducible and p-distinguished.
(ii) Vf and V−

f are free Λf -modules.

Note that, by Proposition 2.4, the second part of the assumption holds when f is the CM
Hida family introduced in §2.4, which is the case that we will consider in later sections.

We first introduce a Perrin-Riou logarithm that will be used for the formulation of an
explicit reciprocity law.

Proposition 4.11. There exists a homomorphism of Λfgh-modules

L+−+
fgh : H1(Qp,V+

f ⊗̂V−
g ⊗̂V+

h (2− t)) → I−1
g Ofgh,

such that for every point (x, y, z) ∈ Wcl
fgh of weights (k, l,m) with βfxαgyβhz ̸= p(k+l+m−2)/2

the specialization of L+−+
fgh at (x, y, z) is the homomorphism

L+−+
fgh (x, y, z) : H1(Qp, V

+
fx

⊗ V −
gy

⊗ V +
hz
(1− c)) → Cp

given by

L+−+
fgh (x, y, z) =

1− p−cαfxβgyαhz

1− p−cβfxαgyβhz

×

{
(−1)c−l

(c−l)! × ⟨logBK(·), ωfx ⊗ ηαgy
⊗ ωhz⟩ if l < k +m

(l − c− 1)!× ⟨exp∗BK(·), ωfx ⊗ ηαgy
⊗ ωhz⟩ if l ≥ k +m,

where logBK denotes the Bloch-Kato logarithm, exp∗BK denotes the dual exponential map and
c = (k + l +m− 2)/2.

Proof. This follows from [BSV22b, Proposition 7.3]. □

Remark 4.12. We recall that the map in the previous theorem is obtained as the composition

L+−+
gh = ⟨log+−+

fgh (·),ωf ⊗ ηg ⊗ ωh⟩,

where log+−+
fgh (·) is the Perrin–Riou big logarithm introduced in [BSV22b, Proposition 7.1].

Remark 4.13. Letting f (resp. h) play the role of g in Proposition 5.11, we obtain a similar
map L−++

fgh (resp. L++−
fgh ) with analogous properties.
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To shorten notation, put V†
fgh = Vf ⊗̂Vg⊗̂Vh(2−t). Let F 2V†

fgh ⊂ V†
fgh be the GQp-stable

Λfgh-submodule of rank 4 defined by

F 2V†
fgh = (Vf ⊗̂V+

g ⊗̂V+
h + V+

f ⊗̂Vg⊗̂V+
h + V+

f ⊗̂V+
g ⊗̂Vh)(2− t).

Fix a finite set Σ of places of Q containing ∞ and the primes dividing NfNgNhp and let QΣ

be the maximal extension of Q unramified outside Σ.

Definition 4.14. The balanced Selmer group of V†
fgh is defined by

H1
bal(Q,V†

fgh) = ker

(
H1(QΣ/Q,V†

fgh) −→
H1(Qp,V†

fgh)

H1
bal(Qp,V†

fgh)

)
,

where
H1

bal(Qp,V†
fgh) = ker

(
H1(Qp,V†

fgh) −→ H1(Qp,V†
fgh/F

2V†
fgh)

)
.

Let pr+−+ : H1
bal(Qp,V†

fgh) → H1(Qp,V+
f ⊗̂V−

g ⊗̂V+
h (2 − t)) be the map induced by the

natural projection F 2V†
fgh → V+

f ⊗̂V−
g ⊗̂V+

h (2− t) and let

Lg
fgh : H1

bal(Q,V†
fgh) −→ I−1

g Ofgh

be the map defined by Lg
fgh = L+−+

fgh ◦ pr+−+ ◦ resp. Similarly we define Lf
fgh and Lh

fgh.

We now state main result of [DR22] and [BSV22b].

Theorem 4.15. There exists a global cohomology class

κ(f ,g,h) ∈ H1
bal(Q,Vf ⊗̂Vg⊗̂Vh(2− t))

such that, for ξ ∈ {f ,g,h}, we have that

Lξ
fgh(κ(f ,g,h)) = Lp

ξ(f ,g,h).

Proof. This is [BSV22b, Theorem A] or [DR22, Theorem 5.1].
□

4.3. Anticyclotomic diagonal cycles. We keep the notations and assumptions in the previ-
ous subsection, as well as the notations and assumptions in §2.4, and specialize the discussion
in the previous subsection to the case in which f is the Hida family introduced in §2.4 with
f = f◦x0

= Eis1(εK).
In this case, we have a class

κ(f ,g,h) ∈ H1(Q, IndQK Λf (φ)⊗̂Vg⊗̂Vh(2− t))

which under Shapiro’s isomorphism can also be seen as a class in

H1(K,Λf (φ)⊗̂Vg⊗̂Vh(2− t)).

Moreover, after specializing f to f , we obtain a class

κ(f,g,h) ∈ H1(Q, (1⊕ εK)⊗ Vg⊗̂Vh(2− t1)) ∼= H1(K,Vg⊗̂Vh(2− t1))

where t1 is the composition of t with the map (Λf ⊗̂Λg⊗̂Λh)
× → (Λg⊗̂Λh)

× induced by the
point x0 : Λf → O.

Assume now in addition that p does not divide the class number of K. Then the classes
κ(f ,g,h) yield classes

κ̃(f ,g,h) ∈ H1(K,Λac(κ
−1
ac )⊗̂Vg⊗̂Vh(2− t1)) ∼= H1

Iw(K
ac
∞,Vg⊗̂Vh(2− t1)),

where Kac
∞ denotes the anticyclotomic Zp-extension of K, Λac = Zp[[Gal (Kac

∞/K)]] denotes
the corresponding Iwasawa algebra and κac : GK → Λ×

ac denotes the tautological character.
When f is residually non-Eisenstein, [ACR23b] realises the class κ̃(f ,g,h) as the bottom layer
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of an anticyclotomic Euler system. However, this does not apply to the choice of f in this
article. We intend to come back to this in the future.

5. Comparison of classes

We keep the assumptions and notations introduced in previous sections. In particular, K
is an imaginary quadratic field in which p splits and f is the CM Hida family introduced in
§2.4 with f = f◦x0

= Eis1(εK). Also, (g,h) is a pair of Hida families of tame levels (Ng, Nh)

and characters (χg, χh) such that χgχh = εKω2r for some r ∈ Z, and g = g◦
y0 and h = h◦

z0
are good crystalline specializations of g and h of weights l0 ≥ 2 and m0 ≥ 1, respectively.

They have characters (χg, χh) = (χ
(p)
g , χ

(p)
h ). We define αg = ap(gy0), βg = χg(p)p

l0−1α−1
g ,

αh = ap(hz0), βh = χh(p)p
m0−1α−1

h . The corresponding definitions for f yield αf = βf = 1.
Set c0 = s0 = (l0 + m0 − 1)/2. The following set of assumptions will be in place in all this
section.

Assumption 5.1.

(i) gcd(Ng, Nh) = 1;
(ii) g and h are residually irreducible and p-distinguished;
(iii) h is a newform of level Nh (i.e., h has prime-to-p conductor).

5.1. An equality of p-adic L-functions. Set Λgh = Λg⊗̂Λh and Ogh = Λgh[1/p]. Let
Lp

g(f,g,h) ∈ I−1
g Ogh be the two-variable p-adic L-function obtained from the three-variable

p-adic L-function Lp
g(f ,g,h) introduced in §3.2 by specializing f to f . Also, we define

Lp(g,h, (l + m − 1)/2) ∈ I−1
g Ogh as the restriction of the three-variable p-adic L-function

L(g,h, s) introduced in §3.1 to the plane 2s = l + m − 1. Similarly, we define the p-adic
L-function Lp(g,h⊗ εK , (l+m− 1)/2) ∈ I−1

g Ogh by replacing h by its twist h⊗ εK .

Proposition 5.2. We have the following equality of p-adic L-functions:

Lp
g(f,g,h)2 = Lp

(
g,h,

l+m− 1

2

)
Lp

(
g,h⊗ εK ,

l+m− 1

2

)
.

Proof. Since the points (y, z) ∈ W̃cl
g ×W̃cl

h with weights ky > kz and with p ∤ cond(gy)·cond(hz)
form a Zariski dense subset of Ug ×Uh, it suffices to prove the equality after specialization at
each such point. Note that for such a point we have that (x0, y, z) ∈ Wg

fgh.

Fix such a point (y, z) ∈ W̃cl
g ×W̃cl

h of weights (l,m) with l > m and let c = (l+m− 1)/2.
Since Vf

∼= L(1)⊕ L(εK), we deduce by Artin formalism the equality of complex L-values

L(f,g◦
y,h

◦
z, c) = L(g◦

y,h
◦
z, c)L(g

◦
y,h

◦
z ⊗ εK , c).

Then, the equality

Lp
g(f,g,h)(y, z)2 = Lp

(
g,h,

l+m− 1

2

)
(y, z) · Lp

(
g,h⊗ εK ,

l+m− 1

2

)
(y, z)

follows from Theorem 3.2 and Theorem 3.6. □

From now on, we make the following assumption.

Assumption 5.3. The p-adic L-function Lp
g(f,g,h) is not identically zero.

Remark 5.4. Note that, in light of Proposition 5.2, the assumption immediately implies that
the p-adic L-functions Lp(g,h, (l+m−1)/2) and Lp(g,h⊗εK , (l+m−1)/2) are not identically
zero.
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5.2. Weighted Beilinson–Flach class. As in previous sections, we denote by Vξ the big
Galois representation associated with a Hida family ξ. Note that the representations Vh⊗εK
and Vh⊗εK are isomorphic. Since p splits in K, an isomorphism of Λh[GQ]-modules Vh⊗εK

∼=
Vh⊗εK yields an isomorphism of Λh[GQp ]-modules Vh⊗εK

∼= Vh and hence an isomorphism of

Dieudonné modules D(V+
h⊗εK

(1−m−χh)) ∼= D(V+
h (1−m−χh)). We choose an isomorphism

ι : Vh⊗εK → Vh ⊗ εK so that the composition

D(V+
h⊗εK

(1−m− χh))
ι−→ D(V+

h (1−m− χh))
⟨ ·,ωh⟩−−−−→ Oh

agrees with the map

D(V+
h⊗εK

(1−m− χh))
⟨ ·,ωh⊗εK

⟩
−−−−−−−→ Oh

and from now on we identify Vh⊗εK with Vh ⊗ εK via this isomorphism.

We put V†
fgh = Vf ⊗ Vg⊗̂Vh(2− t1) and V†

gh = Vg⊗̂Vh(2− t1). Note that

V†
fgh

∼= (1⊕ εK)⊗ V†
gh.

After specializing to the plane 2s = l+m− 1, the class cκ(g,h, s) introduced in §4.1 yields a

class cκ(g,h) in H1(Q,V†
gh). Replacing h by h⊗ εK , we also obtain a class cκ(g,h⊗ εK) in

H1(Q,V†
gh ⊗ εK). We define

κg,h =
(−1)s

c2 − χ−1
g (c)χ−1

h (c)c
·cκ(g,h) and κg,h⊗εK =

(−1)s

c2 − χ−1
g (c)χ−1

h (c)εK(c)c
·cκ(g,h⊗εK).

Note that, on account of Remark 4.9, the classes κg,h and κg,h⊗εK do not depend on c. Note
also that

κg,h ∈ H1
bal(Q,V†

gh) and κg,h⊗εK ∈ H1
bal(Q,V†

gh ⊗ εK),

where the Selmer groupsH1
bal(Q,V†

gh) andH1
bal(Q,V†

gh⊗εK) are defined as in §4.1, specializing
now all objects to the plane 2s = l + m − 1. Further, recall the basis {vf,1, vf,εK} of Vf

introduced in §2.4. We now use these elements to define the Beilinson–Flach class that we
will use in the comparison.

Definition 5.5. The weighted Beilinson–Flach class associated with the pair (g,h) is the
element

BF(f,g,h) = vf,1 ⊗ Lp

(
g,h⊗ εK ,

l+m− 1

2

)
κg,h + vf,εK ⊗ Lp

(
g,h,

l+m− 1

2

)
κg,h⊗εK

in H1(K,V†
fgh).

Since complex conjugation acts trivially on BF(f,g,h), according to the definitions of the

vectors vf,1 and vf,εK given in 2.4, this element descends to a class in H1(Q,V†
fgh) that we

still denote with the same notation, i.e., we have

BF(f,g,h) ∈ H1(Q,V†
fgh).

5.3. Selmer conditions. Fix a finite set Σ of places of Q containing ∞ and the primes
dividing NfNgNhp and let QΣ be the maximal extension of Q unramified outside Σ.

Let F 2V†
fgh ⊂ V†

fgh be the Λgh-submodule of rank 4 defined by

F 2V†
fgh = (Vf ⊗̂V+

g ⊗̂V+
h + V+

f ⊗̂Vg⊗̂V+
h + V+

f ⊗̂V+
g ⊗̂Vh)(2− t1).

Then, as in §4.2, we define the balanced Selmer group of V†
fgh by

H1
bal(Q,V†

fgh) = ker

(
H1(QΣ/Q,V†

fgh) −→
H1(Qp,V†

fgh)

H1
bal(Qp,V†

fgh)

)
,
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where
H1

bal(Qp,V†
fgh) = ker

(
H1(Qp,V†

fgh) −→ H1(Qp,V†
fgh/F

2V†
fgh)

)
.

We also need to introduce other Selmer conditions. Let Vg
fgh ⊂ V†

fgh be the Λgh-submodule

of rank 4 defined by
Vg
fgh = Vf ⊗ V+

g ⊗̂Vh(2− t1)

and let Vg∪+
fgh = Vg

fgh + F 2V†
fgh, which is a Λgh-submodule of V†

fgh of rank 5.

Definition 5.6. For L ∈ {G,G ∪+}, the Selmer group H1
L(Q,V†

fgh) is defined by

H1
L(Q,V†

fgh) = ker

(
H1(QΣ/Q,V†

fgh) −→
H1(Qp,V†

fgh)

H1
L(Qp,V†

fgh)

)
,

where

H1
L(Qp,V†

fgh) =

ker
(
H1(Qp,V†

fgh) −→ H1(Qp,V†
fgh/V

g
fgh)

)
if L = G,

ker
(
H1(Qp,V†

fgh) −→ H1(Qp,V†
fgh/V

g∪+
fgh )

)
if L = G ∪+.

5.4. Perrin-Riou maps. In this subsection we introduce the Perrin-Riou maps that we will
need for the comparison.

Proposition 5.7. There exists a homomorphism of Λgh-modules

L−+
gh : H1(Qp,V−

g ⊗̂V+
h (2− t1)) → I−1

g Ogh,

such that for every point (y, z) ∈ W̃cl
g × W̃cl

h of weights (l,m) with αgyβhz ̸= p(l+m−1)/2 the

specialization of L−+
gh at (y, z) is the homomorphism

L−+
gh (y, z) : H1

(
Qp, V

−
gy

⊗ V +
hz

(
3− l −m

2

))
→ Cp

given by

L−+
gh (y, z) =

1− p(l+m−3)/2α−1
gy

β−1
hz

1− p(1−l−m)/2αgyβhz

×


(−1)(m−l−1)/2

(m−l−1
2 )!

× ⟨logBK(·), ηαgy
⊗ ωhz⟩ if l < m+ 1(

l−m−1
2

)
!× ⟨exp∗BK(·), ηαgy

⊗ ωhz⟩ if l ≥ m+ 1,

where logBK is the Bloch–Kato logarithm and exp∗BK is the dual exponential map.

Proof. The existence and properties of the map L−+
gh can be deduced from those of the map

L−+
ghs in Proposition 4.2 following the argument in [BSV22b, Prop. 7.3]. □

Remark 5.8. Similarly, we have a Λgh-module homomorphism

L+−
gh : H1(Qp,V+

g ⊗̂V−
h (2− t1)) → I−1

h Ogh,

with analogous interpolation properties.

Lemma 5.9. The Λgh-module H1(Qp,V−
g ⊗̂V+

h (2− t1)) is torsion-free.

Proof. To shorten notation, we write V = V−
g ⊗̂V+

h (2− t1). Note that, as a Λgh[GQp ]-module,
we have that

V ∼= Λgh(χg
α−1
g αhΘ),

where χ
g
is the unramified character of GQp defined by χ

g
(Frp) = χg(p), αg is the unramified

character of GQp defined by αg(Frp) = ap(g), αh is the unramified character of GQp defined
by αh(Frp) = ap(h) and Θ is the character of GQp defined by

σ 7→ ω(l0−m0−1)/2
cyc (σ)⟨εcyc(σ)⟩−1/2[⟨εcyc(σ)⟩1/2]Λg ⊗ [⟨εcyc(σ)⟩−1/2]Λh

.
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Let λ ∈ Λgh. Then, we have an exact sequence

H0(Qp,V/λV) → H1(Qp,V) → H1(Qp,V),

where the second arrow is multiplication by λ. Thus, in order to show that the Λgh-module
H1(Qp,V) is torsion-free, it suffices to show that H0(Qp,V/λV) = 0 for all non-zero λ ∈ Λgh.
For that, it suffices to show that H0(Qp,V/QV) = 0 for all height-1 prime ideal Q of Λgh.
Note that, if (l0−m0− 1)/2 ̸≡ 0 (mod p− 1), then the inertia group IQp acts non-trivially on
V/IV for any proper ideal I of Λgh, so the result is immediate. Thus, we assume from now
on that (l0 −m0 − 1)/2 ≡ 0 (mod p− 1) and therefore that l0 ≡ m0 + 1 (mod 2(p− 1)).

Note that Λgh is a finite flat extension of the unique factorization domain Λ⊗̂Λ ≃ Zp[[X,Y ]].
Let γ0 be a topological generator of 1+ pZp (e.g., we can take γ0 = 1+ p). If q is a height-one
prime ideal of Λ⊗̂Λ different from the ideal generated by [γ0]⊗1−1⊗γ0[γ0], then the character
Θ|IQp

: IQp → ((Λ⊗̂Λ)/q)× is non-trivial and therefore H0(Qp,V/QV) = 0 for any height-one

prime ideal Q of Λgh lying above q.
Now let q1 be the height-one prime ideal of Λ⊗̂Λ generated by [γ0] ⊗ 1 − 1 ⊗ γ0[γ0] and

let Q1 be a height-one prime ideal of Λgh above q1. Let q2 be the height-two prime ideal of
Λ⊗̂Λ corresponding to the arithmetic point (Pl−2,1, Pl−3,1) ∈ W ×W for some integer l > 3
such that l ≡ l0 (mod 2(p − 1)). Note that q1 ⊂ q2. Since Λgh is a finite extension of Λ⊗̂Λ,
we can find a prime ideal Q2 of Λgh lying above q2 and such that Q1 ⊂ Q2. The prime Q2

corresponds to a crystalline point (y, z) ∈ W̃cl
g × W̃cl

h of weights (l, l − 1). Since l > 3, both
gy and hz are p-old. Therefore, by the Ramanujan–Petersson conjecture, we have that the

complex absolute value |αhz/αgy | is p−1/2. In particular χg(p)αhz/αgy ̸= 1. It follows that

H0(Qp,V/Q2V) = 0 and therefore H0(Qp,V/Q1V) = 0. □

Proposition 5.10. The map L−+
gh is injective.

Proof. By Theorem 4.8,

L−+
gh (pr−+(resp(κg,h))) = λNg(g)

−1 · Lp

(
g,h,

l+m− 1

2

)
.

In particular, it follows by Assumption 5.3 that the Λgh-module homomorphism L−+
gh is non-

zero. Since H1(Qp,V−
g ⊗̂V+

h (2 − t1)) is a torsion-free Λgh-module of rank 1, it immediately

follows that L−+
gh is injective. □

Proposition 5.11. There exists a homomorphism of Λgh-modules

L+−+
fgh : H1(Qp, V

+
f ⊗ V−

g ⊗̂V+
h (2− t1)) → I−1

g Ogh,

such that for every point (y, z) ∈ W̃cl
g × W̃cl

h of weights (l,m) with αgyβhz ̸= p(l+m−1)/2 the

specialization of L+−+
fgh at (y, z) is the homomorphism

L+−+
fgh (y, z) : H1

(
Qp, V

+
f ⊗ V −

gy
⊗ V +

hz

(
3− l −m

2

))
→ Cp

given by

L+−+
fgh (y, z) =

1− p(l+m−3)/2α−1
gy

β−1
hz

1− p(1−l−m)/2αgyβhz

×


(−1)(m−l−1)/2

(m−l−1
2 )!

× ⟨logBK(·), ωf ⊗ ηαgy
⊗ ωhz⟩ if l < m+ 1(

l−m−1
2

)
!× ⟨exp∗BK(·), ωf ⊗ ηαgy

⊗ ωhz⟩ if l ≥ m+ 1,

where logBK denotes the Bloch-Kato logarithm and exp∗BK denotes the dual exponential map.

Proof. This follows as in [BSV22b, Proposition 7.3], working with Vf instead of Vf . □

Remark 5.12. Similarly, we can define maps L++−
fgh and L−++

fgh .
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Remark 5.13. The relation between L−+
gh and L+−+

fgh is as follows: given an element

v ⊗ z ∈ V +
f ⊗H1(Qp,V−

g ⊗̂V+
h (2− t1)) ∼= H1(Qp, V

+
f ⊗ V−

g ⊗̂V+
h (2− t1)),

we have that

L+−+
fgh (v ⊗ z) = ⟨v, ωf ⟩ · L−+

gh (z).

5.5. The explicit comparison. We can now present one of the main results of this note,
which was already anticipated in the introduction. The result gives a direct comparison
between the weighted Beilinson–Flach class introduced in §5.2 and a diagonal cycle class, in
analogy with the main results of [LR24].

Recall that the class κg,h belongs to the balanced Selmer groupH1
bal(Q,V†

gh). Therefore, the

image of resp(κg,h) in H1(Qp,V−
g ⊗̂Vh(2−t1)) lands in H1(Qp,V−

g ⊗̂V+
h (2−t1)) and the image

of resp(κg,h) in H1(Qp,Vg⊗̂V−
h (2 − t1)) lands in H1(Qp,V+

g ⊗̂V−
h (2 − t1)). We denote these

images by resp(κg,h)
−+ and resp(κg,h)

+−, respectively. Similarly we define resp(κg,h⊗εK )
−+

and resp(κg,h⊗εK )
+−.

We now establish the key proposition towards the comparison that we will prove later.

Proposition 5.14. The image of resp(BF(f,g,h)) in H1(Qp, Vf ⊗V−
g ⊗̂Vh(2− t1)) lands in

H1(Qp, V
+
f ⊗ V−

g ⊗̂V+
h (2− t1)) and is given by

v+f ⊗
(
Lp

(
g,h⊗ εK ,

l+m− 1

2

)
resp(κg,h)

−+ + Lp

(
g,h,

l+m− 1

2

)
resp(κg,h⊗εK )

−+

)
Proof. Since κg,h belongs to H1

bal(Q,V†
gh) and κg,h⊗εK belongs to H1

bal(Q,V†
gh ⊗ εK), the

image of resp(BF(f,g,h)) in H1(Qp, Vf⊗V−
g ⊗̂Vh(2−t1)) lies in H1(Qp, Vf⊗V−

g ⊗̂V+
h (2−t1)).

Therefore, to conclude the proof it suffices to show that the class

v−f ⊗
(
Lp

(
g,h⊗ εK ,

l+m− 1

2

)
resp(κg,h)

−+ − Lp

(
g,h,

l+m− 1

2

)
resp(κg,h⊗εK )

−+

)
in H1(Qp, V

−
f ⊗ V−

g ⊗̂V+
h (2− t1)) is zero. Using Theorem 4.8, we have that

L−+
gh

(
Lp

(
g,h⊗ εK ,

l+m− 1

2

)
resp(κg,h)

−+ − Lp

(
g,h,

l+m− 1

2

)
resp(κg,h⊗εK )

−+

)
= λNg(g)

−1 · Lp

(
g,h⊗ εK ,

l+m− 1

2

)
Lp

(
g,h,

l+m− 1

2

)
− λNg(g)

−1 · Lp

(
g,h,

l+m− 1

2

)
Lp

(
g,h⊗ εK ,

l+m− 1

2

)
= 0.

Since the map L−+
gh is injective by Proposition 5.10, the result follows. □

Remark 5.15. As a consequence of the previous proposition, we have that

BF(f,g,h) ∈ H1
G∪+(Q,V†

fgh).

Let κ(f,g,h) ∈ H1
bal(Q,V†

fgh) be the class obtained from the class κ(f ,g,h) ∈ H1
bal(Q,V†

fgh)

introduced in Theorem 4.15 by specializing f to f . We denote by resp(κ(f,g,h))
+−+ the im-

age of the class resp(κ(f,g,h)) in H1(Qp, V
+
f ⊗ V−

g ⊗̂V+
h (2 − t1)). Similarly, we denote by

resp(BF(f,g,h))
+−+ the image of resp(BF(f,g,h)) in H1(Qp, V

+
f ⊗ V−

g ⊗̂V+
h (2− t1)).

We also introduce the following definition.

Definition 5.16. Let Ωf,γ ∈ L× be the p-adic period given by

Ωf,γ = 2 · ⟨v+f , ωf ⟩f .
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Remark 5.17. The definition of Ωf,γ depends on the isomorphism γ fixed in §2.4, hence the
notation.

Theorem 5.18. The equality

Ωf,γ · L+−+
fgh (resp(κ(f,g,h))

+−+)2 = λNg(g) · L+−+
fgh (resp(BF(f,g,h))

+−+)

holds.

Proof. By Proposition 5.14, we have that

L+−+
fgh (resp(BF(f,g,h))

+−+) = ⟨v+f , ωf ⟩ · Lp

(
g,h⊗ εK ,

l+m− 1

2

)
L−+
gh

(
resp(κg,h)

−+
)

+ ⟨v+f , ωf ⟩ · Lp

(
g,h,

l+m− 1

2

)
L−+
gh

(
resp(κg,h⊗εK )

−+
)
.

Using Theorem 4.8, it follows that

L+−+
fgh (resp(BF(f,g,h))

+−+) =
Ωf,γ

λNg(g)
· Lp

(
g,h,

l+m− 1

2

)
Lp

(
g,h⊗ εK ,

l+m− 1

2

)
.

Hence, by Proposition 5.2,

λNg(g) · L+−+
fgh (resp(BF(f,g,h))

+−+) = Ωf,γ · Lp
g(f,g,h)2,

which is equal to
Ωf,γ · L+−+

fgh (resp(κ(f,g,h))
+−+)2

by Theorem 4.15. □

Corollary 5.19. Assume that H1
G∪+(Q,V†

fgh) is a torsion-free Λgh-module of rank 1. Then

BF(f,g,h) belongs to H1
bal(Q,V†

fgh) and

λNg(g) · BF(f,g,h) = Ωf,γ · Lp
g(f,g,h) · κ(f,g,h).

Proof. Let pr+−+ : H1
G∪+(Qp,V†

fgh) → H1(Qp, V
+
f ⊗V−

g ⊗̂V+
h (2− t1)) be the map induced by

the natural projection Vg∪+
fgh → V +

f ⊗V−
g ⊗̂V+

h (2−t1). Since the element Lp
g(f,g,h) ∈ I−1

g Ogh

is non-zero by Assumption 5.3, it follows from Theorem 4.15 that the map

L+−+
fgh ◦ pr+−+ ◦ resp : H1

G∪+(Q,V†
fgh) −→ I−1

g Ogh

is non-zero and therefore injective by our assumptions onH1
G∪+(Q,V†

fgh). Since both κ(f,g,h)

and BF(f,g,h) belong to H1
G∪+(Q,V†

fgh), the result now follows immediately from the pre-

vious theorem. □

Remark 5.20. Regarding the assumptions in the previous corollary, it is expected by sign

considerations that the Λgh-module H1
bal(Q,V†

fgh) has rank 1 and that the Λgh-module

H1
G(Q,V†

fgh) has rank zero, which would easily imply that the Λgh-module H1
G∪+(Q,V†

fgh)

has rank 1. Moreover, we can ensure that H1
G∪+(Q,V†

fgh) is torsion-free by imposing the

condition that H0(Q, ρ†) = 0, where ρ† is the residual representation attached to V†
fgh.

Remark 5.21. It may be instructive to discuss the analogies and differences between a compar-
ison of this kind and that carried out in [LR24], where we also used a Coleman family passing
through a critical Eisenstein series. Here, the main idea is to construct cohomology classes
over K, that we can then descend and compare with a class over Q. However, in [LR24], the
classes are all defined over Q, so the comparison is between a suitable projection of one of the
classes and the other. Moreover, weight-one modular forms behave in an ostensibly different
way, since both p-stabilizations are ordinary.
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Corollary 5.22. Assume that H1
G∪+(Q,V†

fgh) is a torsion-free Λgh-module of rank 1. Then

Lp
g(f,g,h)Lp

h(f,g,h) =
λNg(g)

λNh
(h)

· Lp

(
g,h,

l+m− 1

2

)
Lp

(
h⊗ εK ,g,

l+m− 1

2

)
=

λNg(g)

λNh
(h)

· Lp

(
g,h⊗ εK ,

l+m− 1

2

)
Lp

(
h,g,

l+m− 1

2

)
.

Proof. By the previous corollary, we know that BF(f,g,h) ∈ H1
bal(Q,V†

fgh). Therefore, the

image of BF(f,g,h) in H1(Qp, V
−
f ⊗ Vg⊗̂V−

h (2− t1)) is zero. This image is given by

v−f ⊗
(
Lp

(
g,h⊗ εK ,

l+m− 1

2

)
resp(κg,h)

+− − Lp

(
g,h,

l+m− 1

2

)
resp(κg,h⊗εK )

+−
)
,

so it follows that

Lp

(
g,h⊗ εK ,

l+m− 1

2

)
resp(κg,h)

+− − Lp

(
g,h,

l+m− 1

2

)
resp(κg,h⊗εK )

+− = 0.

Applying the Perrin-Riou map L+−
gh , we deduce by Theorem 4.8 that

Lp

(
g,h,

l+m− 1

2

)
Lp

(
h⊗ εK ,g,

l+m− 1

2

)
= Lp

(
g,h⊗ εK ,

l+m− 1

2

)
Lp

(
h,g,

l+m− 1

2

)
.(5.1)

Now note that, for any element

v ⊗ z ∈ V +
f ⊗H1(Qp,V+

g ⊗̂V−
h (2− t1)) ∼= H1(Qp, V

+
f ⊗ V+

g ⊗̂V−
h (2− t1)),

we have that

L++−
fgh (v ⊗ z) = ⟨v, ωf ⟩ · L+−

gh (z).

Let pr++− : H1
bal(Qp,V†

fgh) → H1(Qp, V
+
f ⊗ V+

g ⊗̂V−
h (2 − t1)) be the map induced by the

natural projection F 2V†
fgh → V +

f ⊗ V+
g ⊗̂V−

h (2 − t1). Using Theorem 4.8 and equation 5.1,

the image of BF(f,g,h) by L++−
fgh ◦ pr++− ◦ resp is equal to

Ωf,γ · λNh
(h)−1 · Lp

(
g,h,

l+m− 1

2

)
Lp

(
h⊗ εK ,g,

l+m− 1

2

)
.

Also, by Theorem 4.15, the image of κ(f,g,h) by L++−
fgh ◦pr++− ◦resp is equal to Lp

h(f,g,h).

Hence, the result now follows from the previous corollary.
□

Remark 5.23. Note that the p-adic L-functions involved in the statement have disjoint inter-
polation ranges, so the result does not follow by a direct comparison of complex L-values.

5.6. Formulae for specializations. We can now specialize the Hida families (g,h) and
obtain similar results for the fixed modular forms (g, h). We write (gα, hα) = (gy0 ,hz0).

Let L−+
gαhα

: H1(Qp, V
−
g ⊗V +

h (1−c0)) → Cp and L+−+
fgαhα

: H1(Qp, V
+
f ⊗V −

g ⊗V +
h (1−c0)) → Cp

be the maps obtained from the maps L+−
gh and L+−+

fgh introduced above by specializing (g,h)

to (gα, hα). Note that, for any element

v ⊗ z ∈ V +
f ⊗H1(Qp, V

−
g ⊗ V +

h (1− c0)) ∼= H1(Qp, V
+
f ⊗ V −

g ⊗ V +
h (1− c0)),

we have that

L+−+
fgαhα

(v ⊗ z) = ⟨v, ωf ⟩ · L−+
gh (z).
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Also note that, if αgβh ̸= pl0+m0−1, then we have

L−+
gαhα

=
1− p(l0+m0−3)/2α−1

g β−1
h

1− p(−l0−m0+1)/2αgβh
×


(−1)(m0−l0−1)/2(

m0−l0−1
2

)
!

× ⟨logBK(·), ηαgα ⊗ ωhα⟩ if l0 ≤ m0(
l0−m0−1

2

)
!× ⟨exp∗BK(·), ηαgα ⊗ ωhα⟩ if l0 > m0.

To shorten notation, we write V †
fgh = Vf ⊗Vg ⊗Vh(1− c0) and we define Selmer conditions

and Selmer groups for this representation analogous to the ones introduced in §5.3 for the

representation V†
fgh. We denote by κ(f, gα, hα) ∈ H1

bal(Q, V †
fgh) the specialization of the class

κ(f,g,h) and we denote by BF(f, gα, hα) ∈ H1
G∪+(Q, V †

fgh) the specialization of the class

BF(f,g,h).

Proposition 5.24. The equality

Ωf,γ · L+−+
fgαhα

(resp(κ(f, gα, hα))
+−+)2 = λNg(g) · L+−+

fgαhα
(resp(BF(f, gα, hα))

+−+)

holds.

Proof. This is an immediate consequence of Theorem 5.18. □

Corollary 5.25. Assume that H1
bal(Q, V †

fgh) is 1-dimensional and that Lp
g(f, gα, hα) ̸= 0. If

l0 = 2 and m0 = 1, further assume that αgβh ̸= 1. Then BF(f, gα, hα) belongs to H1
bal(Q, V †

fgh)

and
λNg(g) · BF(f, gα, hα) = Ωf,γ · Lp

g(f, gα, hα) · κ(f, gα, hα).

Proof. Arguing as in the proof of [ACR23b, Thm 9.5], we haveH1
G∪+(Q, V †

fgh) = H1
bal(Q, V †

fgh).

Now the proof follows as in Corollary 5.19. □

Remark 5.26. We emphasize that the class κ(f, gα, hα) can be interpreted as an anticyclotomic
cohomology class via the identifications discussed in §4.3.

5.7. A factorization formula for the big logarithm of a Beilinson–Flach class. As
a consequence of the cyclotomic results of [BDV22], Büyükboduk, Casazza, and Sakamoto
[BC23], [BS23] obtained an expression of the Hida–Rankin p-adic L-function in terms of the
Ochiai big logarithm of the Kato class. Here, we discuss an analogue of [BC23, Prop. 8.9],
showing that the image of BF(f,g,h) under a suitable Perrin-Riou map factors as the product
of two triple product p-adic L-functions.

Let L−++
fgh : H1(Qp, V

−
f ⊗ V+

g ⊗̂V+
h (2 − t1)) → Ogh be the Perrin-Riou map obtained from

Lfgh by specializing f to f . It is given by the composition of a big logarithm map log−++
fgh

with the map obtained by pairing with ηαfα ⊗ ωg ⊗ ωh. Note that the pairing is taken with
respect to the differential ηαfα corresponding to the p-stabilized form fα, as opposed to ηαf .

Definition 5.27. We denote by Logωg⊗ωh
the Λgh-module homomorphism

Logωg⊗ωh
= L−++

fgh ◦ pr−++ ◦ resp : H1
bal(Q,V†

fgh) −→ Ogh.

Remark 5.28. In terms of the Beilinson–Flach classes, we can think that the pairing with
ηg ⊗ ωh (resp. ωg ⊗ ηh) allows us to recover the p-adic L-function Lp(g,h) (resp. Lp(h,g)),
while here we are considering instead the pairing with ωg ⊗ ωh.

Let Lp
f (f,g,h) ∈ Ogh be the two-variable p-adic L-function obtained from the three-

variable f -dominant p-adic L-function Lp
f (f ,g,h) introduced in §3.2 by specializing f to f .

In this subsection, we relate the p-adic L-function Lp
f (f,g,h) to the weighted Beilinson–

Flach class BF(f,g,h). Note that, while Lp
g(f,g,h)2 and Lp

h(f,g,h)2 may be factored as
the product of two Hida–Rankin p-adic L-functions by p-adic Artin formalism, the case where
the dominant p-adic L-function is Eisenstein is subtler, as already shown in [BC23].
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Proposition 5.29. Assume that H1
G∪+(Q,V†

fgh) is a torsion-free Λgh-module of rank 1. Then

we have the following factorization of the image of the Beilinson–Flach class under the Perrin-
Riou map Logωg⊗ωh

:

Ωf,γ · Lp
g(f,g,h) · Lp

f (f,g,h) = λNg(g) · Logωg⊗ωh
(BF(f,g,h)).

Proof. By Corollary 5.19, we have

λNg(g) · BF(f,g,h) = Ωf,γ · Lp
g(f,g,h) · κ(f,g,h).

The result then follows immediately by taking Logωg⊗ωh
and using Theorem 4.15. □

6. The p-exceptional case

We keep the notations and assumptions in the previous section, and consider now the
situation where there is a trivial zero for the p-adic L-function Lp

g(f,g,h), as well as for
the p-adic L-functions Lp(g,h) and Lp(g,h⊗ εK), at the point (y0, z0) corresponding to the
modular forms (g, h) arising from the vanishing of an Euler factor at p. In this situation,
the statements in §5.6 become trivial, so we introduce improved classes and improved p-adic
L-functions to remove the vanishing Euler factor.

Hence, along this section we will work under the following assumption.

Assumption 6.1. With the previous notations, it holds that

αgβh = p
l0+m0−3

2 .

Since g and h are p-ordinary and p ∤ cond(h), it follows from this assumption together with
the Ramanujan–Petersson conjecture that (l0,m0) = (2, 1) and that g has conductor Ngp.
Note that this situation includes in particular the case where g is the modular form attached
to an elliptic curve over Q with multiplicative reduction at p, which is of great arithmetic
interest.

We consider the following codimension-1 subvariety of Ug × Uh:

Y = {(y, z) ∈ Ug × Uh | κg(y) = κh(z) + 1}.
Let C be an irreducible component of Y containing the point (y0, z0). We denote by OC the
corresponding ring of global functions. Note that an arithmetic point (y, z) ∈ C ⊂ Ug × Uh

will have weights (l, l − 1) for some integer l. We denote by Ccl the intersection of C with

W̃cl
g × W̃cl

h .

Note that, for any point (y, z) ∈ Ccl with p ∤ cond(gy) ·cond(hz), the Euler factor E(x0, y, z)
appearing in the interpolation formula for Lp

g(f,g,h) and the Euler factor E(y, z, s(y, z))
appearing in the interpolation formula for Lp(g,h, (l+m− 1)/2) are given by

E(x0, y, z) = E(y, z, s(y, z)) =
(
1− χg(p)

αhz

αgy

)2(
1− χg(p)

βhz

αgy

)2

.

For varying values of (y, z) ∈ Ccl, the factors 1− χg(p)αhzα
−1
gy

are interpolated by the p-adic
L-function

1− χg(p)
ap(h)

ap(g)
∈ OC ,

which vanishes at the point (y0, z0).

Remark 6.2. The appearance of the double factor(
1− χg(p)

ap(h)

ap(g)

)2

in the interpolation formula for Lp
g(f,g,h) (resp. Lp(g,h, (l + m − 1)/2)) at points in Ccl

comes from two different sources:
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• the numerator in the interpolation formula for the Perrin-Riou map L+−+
fgh (resp. L−+

gh );

• the comparison between the corresponding p-stabilized and non-p-stabilized cohomol-
ogy classes.

6.1. Improved p-adic L-functions. In this subsection we introduce the improved p-adic
L-functions that we will use.

Theorem 6.3. There exists a p-adic L-function

L̂p(g,h) ∈ I−1
g OC

such that

Lp(g,h, (l+m− 1)/2)|C =

(
1− χg(p)

ap(h)

ap(g)

)2

L̂p(g,h).

Proof. Let N = lcm(Ng, Nh). Let E1 = E
(1)
1/N (τ) be the weight-1 holomorphic Eisenstein

series introduced in [LLZ14, §5.1]. Then, as in the proof of [BSV22b, Lemma 9.8], one shows
that the p-adic L-function

L̂p(g,h) =
⟨WN (g), eord(E1 · h)⟩N

⟨g,g⟩N
∈ I−1

g OC

satisfies the required properties.
□

Theorem 6.4. There exists a p-adic L-function

L̂p
g
(f,g,h) ∈ I−1

g OC

such that

Lp
g(f,g,h)|C =

(
1− χg(p)

ap(h)

ap(g)

)2

L̂p
g
(f,g,h).

Proof. This is proved as in [BSV22b, Lemma 9.8], taking (f ,g,h) in loc. cit. to be our (g,h, f).
□

6.2. Improved Perrin-Riou maps. In this subsection we introduce improved Perrin-Riou
maps. Given a Λgh-module M , we denote by M |C the OC-module M ⊗Λgh

OC .

Proposition 6.5. There exists a homomorphism of OC-modules

L̂−+
gh : H1(Qp,V−

g ⊗̂V+
h (2− t1)|C) → I−1

g OC ,

such that for every point (y, z) ∈ Ccl of weights (l, l − 1) the specialization of L̂−+
gh at (y, z) is

the homomorphism

L̂−+
gh (y, z) : H1(Qp, V

−
gy

⊗ V +
hz
(2− l)) → Cp

given by

L̂−+
gh (y, z) =

1

1− p1−lαgyβhz

× ⟨exp∗BK(·), ωf ⊗ ηαgy
⊗ ωhz⟩.

Proof. This follows from [BSV22b, Lemma 9.4]. □

Proposition 6.6. There exists a homomorphism of OC-modules

L̂+−+
fgh : H1(Qp, V

+
f ⊗ V−

g ⊗̂V+
h (2− t1)|C) → I−1

g OC ,

such that for every point (y, z) ∈ Ccl of weights (l, l − 1) the specialization of L̂+−+
fgh at (y, z)

is the homomorphism

L̂+−+
fgh (y, z) : H1(Qp, V

+
f ⊗ V −

gy
⊗ V +

hz
(2− l)) → Cp
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given by

L̂+−+
fgh (y, z) =

1

1− p1−lαgyβhz

× ⟨exp∗BK(·), ωf ⊗ ηαgy
⊗ ωhz⟩.

Proof. This follows from [BSV22b, Lemma 9.4]. □

Remark 6.7. As before, given an element

v ⊗ z ∈ V +
f ⊗H1(Qp,V−

g ⊗̂V+
h (2− t1)|C) ∼= H1(Qp, V

+
f ⊗ V−

g ⊗̂V+
h (2− t1)|C),

we have that

L̂+−+
fgh (v ⊗ z) = ⟨v, ωf ⟩ · L̂+−

gh (z).

6.3. Improved cohomology classes. We now introduce the improved version of the coho-
mology classes that have been used in this work.

We can define Selmer conditions for the OC [GQ]-modules V†
gh|C and V†

fgh|C analogous

to the ones introduced for V†
gh and V†

fgh in the previous section and consider the corre-

sponding Selmer groups. In particular, we can consider the Selmer groups H1
bal(Q,V†

gh|C),
H1

bal(Q,V†
fgh|C) and H1

G∪+(Q,V†
fgh|C).

While in the case of diagonal cycles there is a construction of an improved cohomology class,
this is not the case for Beilinson–Flach elements. As it occurs with the p-adic L-function, the

factor
(
1− χg(p)

ap(h)
ap(g)

)
appears in the interpolation property when considering its variation

in families (see e.g. [KLZ17, §8]). Hence, the following conjecture can be seen as a standard
expectation in the theory of exceptional zeros, and we expect to come back to it in forthcoming
work.

Conjecture 6.8. There exists a cohomology class κ̂g,h ∈ H1
bal(Q,V†

gh|C) such that

κg,h|C =

(
1− χg(p)

ap(h)

ap(g)

)
κ̂g,h.

Remark 6.9. Similarly, we also expect to have an analogous improved cohomology class

κ̂g,h⊗εK ∈ H1
bal(Q,V†

gh|C ⊗ εK).

For the rest of this section, we work under the following assumption.

Assumption 6.10. Conjecture 6.8 holds.

Let pr−+ : H1
bal(Qp,V†

gh|C) → H1(Qp,V−
g ⊗̂V+

h (2−t1)|C) be the map induced by the natural

projection F 2V†
gh|C → V−

g ⊗̂V+
h (2− t1)|C and let

L̂g
gh : H1

bal(Q,V†
gh|C) −→ I−1

g OC

be the map defined by L̂g
gh = L̂−+

gh ◦ pr−+ ◦ resp.

Proposition 6.11. The class κ̂g,h satisfies

L̂g
gh(κ̂g,h) = L̂p(g,h).

Proof. By Proposition 6.5, Theorem 4.8 and Theorem 6.3, we have(
1− χg(p)

ap(h)

ap(g)

)2

L̂g
gh(κ̂g,h) = Lg

gh(κg,h)|C = Lp(g,h)|C

=

(
1− χg(p)

ap(h)

ap(g)

)2

L̂p(g,h).
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By the Ramanujan–Petersson conjecture, the factor 1 − χg(p)
ap(h)
ap(g)

does not vanish at any

point (y, z) ∈ Ccl with p ∤ cond(gy) · cond(hz), so in particular it is non-zero in OC . The result
now follows from the above equality. □

Remark 6.12. Similarly L̂g
gh(κ̂g,h⊗εK ) = L̂p(g,h⊗ εK).

Proposition 6.13. There exists a cohomology class κ̂(f,g,h) ∈ H1
bal(Q,V†

fgh|C) such that

κ(f,g,h)|C =

(
1− χg(p)

ap(h)

ap(g)

)
κ̂(f,g,h).

Proof. This is proved in [BSV22b, §9.3]. □

Let pr+−+ : H1
bal(Qp,V†

fgh|C) → H1(Qp, V
+
f ⊗ V−

g ⊗̂V+
h (2 − t1)|C) be the map induced by

the natural projection F 2V†
fgh|C → V +

f ⊗ V−
g ⊗̂V+

h (2− t1)|C and let

L̂g
fgh : H1

bal(Q,V†
fgh|C) −→ I−1

g OC

be the map defined by L̂g
fgh = L̂+−+

fgh ◦ pr+−+ ◦ resp.

Proposition 6.14. The class κ̂(f,g,h) satisfies

L̂g
fgh(κ̂(f,g,h)) = L̂p

g
(f,g,h).

Proof. By Proposition 6.6, Proposition 6.13, Theorem 4.15 and Theorem 6.4, we have(
1− χg(p)

ap(h)

ap(g)

)2

L̂g
fgh(κ̂(f,g,h)) = Lg

fgh(κ(f,g,h))|C = Lp
g(f,g,h)|C

=

(
1− χg(p)

ap(h)

ap(g)

)2

L̂p(f,g,h).

By the Ramanujan–Petersson conjecture, the factor 1 − χg(p)
ap(h)
ap(g)

does not vanish at any

point (y, z) ∈ Ccl with p ∤ cond(gy) · cond(hz), so in particular it is non-zero in OC . The result
now follows from the above equality. □

6.4. The main theorem. In this subsection, we adapt the main result of §5.6 to the current
exceptional case.

Proposition 6.15. We have the following equality of p-adic L-functions:

L̂p
g
(f,g,h)2 = L̂p(g,h)L̂p(g,h⊗ εK).

Proof. By Proposition 5.2, Theorem 6.3 and Theorem 6.4, we have the equality(
1− χg(p)

ap(h)

ap(g)

)4

L̂p
g
(f,g,h)2 =

(
1− χg(p)

ap(h)

ap(g)

)4

L̂p(g,h)L̂p(g,h⊗ εK)

in I−2
g OC . By the Ramanujan–Petersson conjecture, the factor 1−χg(p)

ap(h)
ap(g)

does not vanish

at any point (y, z) ∈ Ccl with p ∤ cond(gy) · cond(hz), so in particular it is non-zero in OC .
The result now follows from the above equality. □

We now introduce the improved Beilinson–Flach class that we will use. For the remaining
of the section, we assume that Conjecture 6.8 is true.

Definition 6.16. The improved weighted Beilinson–Flach class associated with the pair (g,h)
is the element

B̂F(f,g,h) = vf,1 ⊗ L̂p(g,h⊗ εK)κ̂g,h + vf,εK ⊗ L̂p(g,h)κ̂g,h⊗εK

in H1(Q,V†
fgh|C).
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Let resp(κ̂(f,g,h))
+−+ and resp(B̂F(f,g,h))

+−+ be the images of resp(κ̂(f,g,h)) and

resp(B̂F(f,g,h)), respectively, in H1(Qp, V
+
f ⊗ V−

g ⊗̂V+
h (2− t1)|C).

Theorem 6.17. The equality

Ωf,γ · L̂+−+
fgh (resp(κ̂(f,g,h))

+−+)2 = λNg(g) · L̂+−+
fgh (resp(B̂F(f,g,h))

+−+)

holds.

Proof. The result follows as in Theorem 5.18, working in this case with the improved Perrin-
Riou maps. □

Proposition 6.18. Assume that H1(Q,V†
fgh|C) is a torsion-free OC-module and H1

G∪+(Q,V†
fgh)

is a torsion-free Λgh-module of rank 1. Then B̂F(f,g,h) belongs to H1
bal(Q,V†

fgh|C) and

Ωf,γ · L̂p
g
(f,g,h) · κ̂(f,g,h) = λNg(g) · B̂F(f,g,h).

Proof. By Corollary 5.19, we have(
1− χg(p)

ap(h)

ap(g)

)3

·Ωf,γ · L̂p
g
(f,g,h) · κ̂(f,g,h) =

(
1− χg(p)

ap(h)

ap(g)

)3

·λNg(g) · B̂F(f,g,h).

Since H1(Q,V†
fgh|C) is a torsion-free OC-module and 1 − χg(p)

ap(h)
ap(g)

is non-zero in OC , it

follows that

Ωf,γ · L̂p
g
(f,g,h) · κ̂(f,g,h) = λNg(g) · B̂F(f,g,h).

In particular, since κ̂(f,g,h) belongs to H1
bal(Q,V†

fgh|C), the same is true for B̂F(f,g,h). □

Remark 6.19. As in Remark 5.20, we can ensure that both H1
G∪+(Q,V†

fgh) and H1(Q,V†
fgh|C)

are torsion-free by imposing the condition that H0(Q, ρ†) = 0, where ρ† is the residual repre-

sentation attached to V†
fgh.

Let κ̂(f, gα, hα) ∈ H1
bal(Q, V †

fgh) and B̂F(f, gα, hα) ∈ H1
G∪+(Q, V †

fgh) be the specializations

of the classes κ̂(f,g,h) ∈ H1
bal(Q,V†

fgh|C) and B̂F(f,g,h) ∈ H1(Q,V†
fgh|C), respectively, at

the point (y0, z0).

Corollary 6.20. Assume that H1(Q,V†
fgh|C) is a torsion-free OC-module and H1

G∪+(Q,V†
fgh)

is a torsion-free Λgh-module of rank 1. Then B̂F(f, gα, hα) belongs to H1
bal(Q, V †

fgh) and

λNg(g) · B̂F(f, gα, hα) = Ωf,γ · L̂p
g
(f, gα, hα) · κ̂(f, gα, hα).

Proof. This is an immediate consequence of the previous proposition. □
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[ACR23a] Raúl Alonso, Francesc Castella, and Óscar Rivero, An anticyclotomic euler system for for ad-
joint modular galois representations, Ann. Inst. Fourier (Grenoble), to appear (2023), available at
arXiv:2204.07658. 1

[ACR23b] , The diagonal cycle euler system for GL2 ×GL2, J. Inst. Math. Jussieu, to appear (2023),
available at arXiv:2106.05322. 1, 2, 15, 23

[AI21] Fabrizio Andreatta and Adrian Iovita, Triple product p-adic L-functions associated to finite slope
p-adic families of modular forms, Duke Math. J. 170 (2021), no. 9, 1989–2083. MR 4278669 3, 4,
10
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