Wall-crossing and p-adic Artin formalism for GSp, xGLy x GL4y
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ABsTrRACT. The goal of this article is to develop a p-adic Artin formalism in the context of p-adic families of
automorphic forms on GSp, XGLg2 X GL2. Our treatment is guided by the (double) wall-crossing principle,
emphasising an interplay between arithmetic GGP and p-adic explicit GGP formulae. Although the picture
we present remains largely conjectural, we provide evidence in favour of our conjectures (a) in terms of
algebraic p-adic L-functions, and (b) in endoscopic scenarios.
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1. INTRODUCTION

Let f and g be primitive Hida families of cuspidal eigenforms. In their seminal work [BDP13], Bertolini—
Darmon-Prasanna construct a p-adic L-function LEDP (g x f) that interpolates the central critical Rankin—
Selberg L-values L(g x f,¢) (suitably normalised by a period) when g is a CM family and the specialisation
g of g has higher weight than the speecialisation f of f. The construction of this p-adic L-function relies on
another fundamental result, which is an extension of the celebrated work of Waldspurger, that expresses the
indicated L-value as the square of a toric period (which is non-zero only when &,(g x f,¢) = +1 for all local
epsilon factors), which can be reduced to a finite sum involving CM points. This allowed them to prove their
celebrated “BDP” (p-adic Waldspurger) formula'!, which roughly reads

LEDP(E x f) lim Prr(f, x g)\) = logpk (GHC#xy) wt(f) > wt(g) .

loxs ™ (£,..8,)—=(f.9)
wt (k) <wt(X)

This formula expresses the value of the BDP p-adic L-function LEPF (g x £), ., at a pair (g, f) with wt(g) <
wt(f) (that lies outside its range of interpolation), which can be thought of as the p-adic limit of toric periods
Pror(f, x gk) in the g-dominant range, in terms of the Bloch-Kato logarithm of the generalised Heegner
cycle GHCjy, of Bertolini-Darmon—Prasanna. This is the first instance of what we call (following S. Lai)
wall-crossing principle, and it is summarised in Figure 1 below.
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LThis has been generalised in [LZZ18] to cover the case of forms on non-split quaternion algebras.
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Ficure 1. Wall-crossing for GL2 x GL2

A second example of wall-crossing has been studied in [DR22, BSV22] in the context of triple products,
which is depicted in Figure 2: We let h denote a third primitive Hida family (and we no longer assume
that g has CM). The local epsilon factors at the central critical point €,(f X g x h) at a non-archimedean
prime v is constant as the classical specialisations f x g x h of f X g x h vary, and let us assume that they
are equal to +1 for all such v. It turns out that, when the triple (f,g,h) is balanced (namely, we have
wt(x) + wt(y) > wt(z) for all permutations (z,y, z) of (f, g, h)), the archimedean sign €. (f X g X h) equals
—1, and therefore also the global epsilon factor: ™ (f x g x h) = —1. As a result, one expects cycles to
explain the leading term of the associated L-series. These are the diagonal cycles of Gross-Kudla—Schoen,
which Darmon-Rotger in [DR22] and Bertolini-Seveso—Venerucci in [BSV22| interpolate as f x g X h vary
among the balanced classical specialisations of f x g x h. On the other hand, we have

eo(fXgxh)=4+1=e®(f xgxh), when wt(g)>wt(f)+wt(h)

in the g-dominant scenario. In this case, Hsieh in [Hsi21] has constructed a p-adic L-function L;,g) (fxgxh)

whose square interpolates the central critical L-values L(f X g X h, ¢) (suitably normalised by a period). This

construction relies on an explicit Gan-Gross-Prasad (GGP) formula?, expressing the indicated L-value as

a global trilinear period, and is one of the key ingredients of the reciprocity law of [DR22, BSV22|. This
reciprocity law roughly reads

(8) .

Ly (fxgxh = lim
p (Ex g B (f,.8,h,)=(f.9.h)
wt(X) Zwt (k) +wt ()

PA (ikﬁg)\;h#) = IOgBK(AfXth) ) (f7 9, h) is balanced .

This p-adic GGP limit formula expresses the value of Hsieh’s p-adic L-function Lég) (f xgxh), xaxns Which
can be thought of as the p-adic limit of trilinear periods Pa (fmg)\,h“) in the g-dominant range, at a
balanced triple (f, g, k) (that lies outside its range of interpolation) in terms of the Bloch-Kato logarithm of

the diagonal cycle A ¢y gxn-
wt(h)

Balanced
e=+1

rf

e=+1
wt(g) > wt(f) + wt(h)

wt(g)

Ficure 2. Wall-crossing from g-dominant region to balanced region

2We note that this is a generalisation of the work of Waldspurger and its extension by Bertolini-Darmon—Prasanna to the
setting of the present paragraph.
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1.1. Applications to Artin formalism. The key insight of this paper, as well as its precursors [BS25,
BCPdVP25, BC25], is that the Artin formalism of p-adic L-functions (that come about interpolating GGP
periods) at points away from their range of interpolation is governed by the wall-crossing principle. In op.
cit., the authors consider the case when h = g€ is the family dual to g, so that we have a decomposition

(1.1)

|~

xgxgciﬁxado(g)ﬁﬂf

of families of automorphic representations, and formulate a conjecture that factors the g-dominant p-adic
L-function L;g) (f x g x g°) to reflect the decomposition (1.1). We remark that such a factorisation is not a

soft consequence of Artin formalism, as the range of interpolation of L;g) (f x g x g°) does not intersect the
locus range where the decomposition (1.1) is valid. In [BCPdVP25], the factorisation conjecture is reduced to
the proof of arithmetic GGP conjectures® in the balanced range. As a result, one may treat this factorisation
problem as a recipe to encode the interplay between p-adic GGP formulae (of Bertolini-Seveso—Venerucci
and Darmon—Rotger) and arithmetic GGP formulae (cf. [YZZ, Xuel9]) in this degenerate scenario (where
h=g°).

We remark that the factorisation conjecture of [BS25] has been proved unconditionally in [BC25] in the
special case when h = g¢ has CM by an imaginary quadratic field K, whose non-trivial character is denoted
by ex. This result relies on the factorisation of the BDP p-adic L-function LEDP(EK x f)|,. when the
canonical Hida family g . (as in [BDV22], §4.2) is specialised to ggs (a weight-one Eisenstein series), which
reflects the decomposition ggis X f = f B f ® €. The proof of the factorisation of LEDP(EK X £)|ms is
deduced from the BDP formula in this setting, paralleling the approach outlined in the previous paragraph.

1.2. This paper. Our goal in the present work is to develop a p-adic Artin formalism in the context of
p-adic families of automorphic forms on GSp, xGL2 x GL2, extending the work of the first and third named
authors outlined in §1.1.

To make this precise, let us fix an automorphic representation II of GSp,, and assume that the GLg x GLo-
factor is the anti-symmetric product o x ¢€. In this scenario, the degree—16 L-series

L(s,1I x 0 x 6°) = L(s,1I x ad’ o) L(s,1I)

factors into a product of a degree-12 and degree-4 L-series. AsII and o vary in p-adic families, one expects (“p-
adic Artin formalism”) a corresponding factorisation of the degree-16 p-adic L-functions. Our primary focus
will be those scenarios where the sought-after factorisation is not a direct consequence of the interpolation
formulae characterising the p-adic L-functions.

The first objective of this paper is to formulate a precise factorisation conjecture for p-adic L-functions
attached to families of forms on GSp, xGL2 x GL3, and the second is to prove its variant for algebraic p-adic
L-functions. As in [BS25], our guide is the wall-crossing principle that ties together the (p-adic limits of)
explicit GGP formulae and arithmetic GGP formulae (both of which appear to be out of reach for the time
being), together with the Equivariant Tamagawa Number Conjecture (ETNC).

Before we move ahead to describe our work in detail, we remark a fundamental difference between the
consideration here concerning the p-adic L-function whose interpolation range is “Region (a)” (in the termi-
nology of [LZ21b]), and that in [BS25] outlined above: One needs to wall-cross twice. This point is detailed
in §1.5.2 below.

1.3. The setting of this paper. We fix a family of cuspidal automorphic representations II of GSpy,,
together with a family of cuspidal automorphic representations o of GLy. We denote by ¢¢ the conjugate Hida
family, namely the twist of g by the inverse of its central character. The weights of a classical specialisation
of IT will be denoted by a pair (k1,ks), where k1 > ko > 3, and we write ¢; and c¢p for the weights of
classical specialisations of o and ¢¢, respectively. In [LZ21b, §2.3|, the authors explicate the “GGP regions”,
determined in terms of the interlacing relations of the quadruple of weights (k1, k2, c1, c2); cf. §2.5.1.

3These are extensions of Gross—Kudla conjectures to allow non-semistable cases.
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1.3.1. One expects a p-adic L-function in each of these regions, characterised by an interpolation property
involving the square roots of the central critical values. When the global epsilon factor equals —1 in a region
(¢) (as is the case when o € {b,e}), then the said L-values vanish, and as a result, so does the corresponding
p-adic L-function. We call these regions “geometric”, as one expects the existence of cycles to explain
this systematic order of vanishing (a la arithmetic GGP conjectures). In §2.5.2 we review the conjectural

descriptions of these p-adic L-functions, which we denote by Ll(f)(ﬂ x o X ¢), where ¢ € {a,c,d, f} (those
GGP regions where the global sign equals +1).

1.3.2. The main objective of this article is to study a p-adic Artin formalism for these degree—16 p-adic
L-functions (cf. our Factorisation Conjecture 2.9 and Conjecture 2.10), with an emphasis on regions (a) and
(d) where the intersection of the range of interpolation of L,()Q) (I x o x ) does not intersect the locus where
Artin formalism is relevant (i.e., the locus determined by the diagonal of the family o x o€, over which have
a decomposition II x ado = II x ad’ o B1I of families of automorphic representations). As a shorthand for

the restriction of L;O)(H X g X ¢) to this locus, we sometimes use the notation L,(16¢) (where 16 is the
degree of the L-functions whose central values are being interpolated).

1.3.3.  Our Factorisation Conjecture 2.9 for L,(16d) involves another (also conjectural) degree-12 p-adic
L-function L,(12e), reflecting the decomposition of the underlying degree-16 motives into a direct sum of
degree-12 and degree-4 motives alluded to above.

1.3.4. As notation for later use, we write Ry the Hecke algebra of II (see §2.3.3 for its precise definition),
and we define R, in a similar way (cf. §2.1). We set

Ry =Ru®z, Ry Oz, R, Rz = Ru®z, Ro.
1.4. An overview. We briefly outline the main results of the paper.

1.4.1. Conjectural factorisation formulae. As we have remarked above, the main purpose of this work is to
puzzle out the form of Artin formalism for the p-adic L-functions L,(16d) and L,(16a): these are formulated
as Conjecture 2.9 and Conjecture 2.10 below. We refer the reader to §1.5, where we discuss the motivation
behind these conjectures, from the perspective offered by the (double) wall-crossing principle, which rests
upon conjectural p-adic GGP formulae in this context.

The factorisation problem for L,(16d) seems to parallel the analogous problem studied in [BS25] in the
context of forms on GLs X GLa X GLs. As a matter of fact, in §6.3 (see especially Theorem 6.21), we explain
that a degenerate case of Conjecture 2.9 is equivalent to the factorisation problem considered in op. cit.

On the other hand, Factorisation Conjecture 2.10 concerning L,(16a) seems far more subtle, requiring a
novel input. We discuss the underlying key principles in §1.5.2.

Note that even the p-adic L-functions L,(16d) and L,(16a) are currently conjectural (as well as some of
the factors that appear in their conjectural factorisation formulae) in the level generality they are introduced
in our paper. Our evidence in support of our Factorisation Conjecture 2.9 and Conjecture 2.10 are in two
forms: Firstly, we formulate and prove their algebraic counterparts; cf. §1.4.2 for an outline of our results
in this vein. Secondly, we obtain unconditional results in endoscopic cases; cf. §1.4.3 for an overview of our
work in this direction.

1.4.2. Algebraic counterpart. Sections 3—5 are dedicated to prove algebraic counterparts of our factorisation
conjectures. The algebraic counterparts of the conjectural p-adic L-functions L,(16¢) and L,(12e) are
characteristic ideals of appropriately defined Selmer groups (which arise as the cohomology of a Selmer
complex in degree 2; cf. §3.5), which one calls “algebraic p-adic L-functions”. In this introduction, we shall
denote them by L3'8(160) and L3'8(12e).

However, as the propagations of the p-refinements of the degree-16 family of motives to degree-12 and
degree-4 summands no longer satisfy the Panchiskin condition, the factorisation of the algebraic p-adic L-
functions does not simply involve (as in the case of [Pall8]) algebraic p-adic L-functions associated to the
degree-12 and degree-4 summands, but rather modules of leading terms that we introduce and systematically
study in §4.2.



Our Theorem 5.1 indeed factors Lglg(16d) as a product of L;lg (12e) and the trivialisation of the module
of leading terms associated to the Galois representation TrT[ of rank 4. The proof of this result closely follows
the arguments of [BS25]; we give a second proof of this theorem in Remark 5.24.

The factorisation of L3'8(16a) is far more subtle, as based on our double wall-crossing principle (cf. §1.5.2),
it is expected to be a p-adic avatar of second-order central derivatives of L-functions. We study this problem
in §5.2. Our main result, Theorem 5.13, in this subsection factors Lglg (16a) into a product of trivialisations
of 2 modules of leading terms (associated with each family of rank-12 and rank-4 sub-representations).

Our algebraic factorisation results in §5 are supplemented in §6.2, where we treat the case of Yoshida
lifts in the region (a). Our main result in this subsection is Corollary 6.18. We also refer the reader to
Corollaries 6.12-6.14 and Remark 6.17, where we explain why the modification in §6.2 is required (in view
of the properties of Eichler-Shimura isomorphisms in this context).

1.4.3. Endoscopic scenarios. When II is a family of Yoshida lifts, one may give an ad hoc (but unconditional)
definition of L,(16a) and L,(16d) in terms of Hsieh’s triple product p-adic L-functions (cf. §6.1.1 and §6.3),
and our Factorisation Conjecture 2.9 for L,(16d) can be reduced to one considered in [BS25, BCPdVP25]
(cf. Theorem 6.21).

The Factorisation Conjecture 2.10 concerning L,(16a) can be formulated as Conjecture 6.3. As we note
at the start of §6, a reformulation is indeed required due to the interpolative properties of Eichler-Shimura
isomorphisms (cf. §3.7). The proof of Conjecture 6.3 is then reduced to a pair factorisation problems for
families on GLy X GLy X GLy, one of which is the one considered in [BS25, BCPAVP25|, and the other
(cf. Equation (6.6) below), that supplements these works, is work in progress by the first and third named
authors with A. Cauchi.

Finally, in §6.4, we consider the case when II is a (one-parameter) family of Saito-Kurokawa lifts of a
Hida family f of ordinary modular forms, and T = TfT ®Z,®Z,(1). In this case, the factorisation problem
once again reduces to a combination of results established in [BS25] and [Das16], and this is summarised as
Proposition 6.22.

1.5. Wall-crossing principle. We briefly discuss the (BDP) “wall-crossing” principle?, which is an exten-
sion of the BDP principle in [BS25, §2.2.5], that governs our factorisation conjectures. This will also highlight
the differences with the scenario considered in [BS25] in the scenario “(a) to (¢)” (cf. §5.2) which requires
“double wall-crossing”™: first from (a) to (b), then from (b) to (c).

To facilitate this rather philosophical discussion, for D € {12,16}, and ? € {a,b, ¢, d, e}, let us denote by
L,(D?) the restriction of the (conjectural) p-adic L-function interpolating the central critical values of the
degree-D L-series L(s,II x o X 0¢) when the weights belong to (?7), to X := im(Spec R3 LN SpecRy4). Let
us denote the classical specialisations in X by X! (that correspond to classical forms on GSp, x GLy x GLy),
and by r_,d those classical specialisations with weights in the region (7).

Throughout this discussion, we retain our running assumption that the global root number £(II) of all
members of the Hida family II at their central critical points is —1.

1.5.1. Crossing from (d) to (e). Notice that the interpolation range of the conjectural p-adic L-function
L,(16d) is X;l, which is empty. On the other hand, X' is dense in X'. Recall also that, by assumption, the
global root number of II, x ad’a, at its central critical point equals —1 for all (x, \) € X2

1

Furthermore, whenever (x,\) € X!, s = 5 18 critical® (in the sense of Deligne) for both degree-12 L-series

L(s, 11, x ad’c,) and the degree—4 L-series L(s,II.). Note that we have

e(Il,) = -1, e(I, xad’s,) = +1, V(k,A) € XS,
and the Artin formalism for such (k, \) yields the factorisation
(1:2) L(300, x adey) = L(3,IL, x ad’ay) - L'(3,10,).
Inspired by the fundamental results in [BDP13], we adopt the guiding principle that

4This nomenclature is due to Shilin Lai.
5See §2.4 for a further discussion on this point.



(BDP?) the p-adic L-function L,(16d) should be thought of as a p-adic avatar of the family of derivatives
{L'(3.10, xadgy) : (k,A) € X} .
This, combined with (1.2), in turn suggests that

Ly(16d)),, = Ly(12¢) - “a p-adic avatar of {L'(3.11,) : k € Spec(Rp)“'} .

This is the form of our factorisation conjecture for the p-adic L-function L,(16d), as well as its algebraic
variant concerning modules of leading terms. We invite the reader to compare this discussion to [BS25,
§2.2.5], where the similarity of the problem at hand to that considered in op. cit. will be evident.

Remark 1.1. The wall-crossing principle can be recast as follows. The p-adic limits of the explicit GGP
formulae on the region (d) approximating the points in the region (e) (which give rise to L,(16d),,) are
p-adic avatars of the arithmetic GGP formulae in the region (e). This is an extension of the principles
underlying [BDP13|: Indeed, in the setting of op. cit., the BDP p-adic L-function is constructed building
on the Waldspurger formula, and the arithmetic GGP formulae boils down to Gross—Zagier formulae for
generalised Heegner cycles. |

1.5.2. Crossing from (a) to (c) through (b). We now discuss the case that concerns the factorisation of the
p-adic L-function L,(16a), which involves a new phenomenon (that we call “double wall-crossing”).

As in the previous case, X! is empty, but so is de. This is the key difference with §1.5.1, and that is
why (BDPY) will not apply. That also means, the search for an arithmetic meaning of L,(16a) leads us
to the region (c) that region (b) “neighbours” (cf. [LZ21b|, Figure 2). Note that X! is dense in X, and
by assumption, the global root number of II, x adog)\ at its central critical point ¢(k) equals +1 for all
(k,\) € Xcl.

The value s = 3 is critical (in the sense of Deligne) for both L-series L(s,II, x ad’c,) and L(s,II,)
whenever (k,\) € X< Furthermore, we have

e(l,) = -1 =¢e(l, x ad’s)), V(k,\) € XS
and the Artin formalism for such (k, \) yields the factorisation
(1.3) L"(3,1L, x adgy) = L'(3,10, x ad’ay) - L'(3,11,,).

of second-order derivatives. The key insight that led us to our factorisation conjecture is the following:
(BDP{) the p-adic L-function L,(16a) should be thought of as a p-adic avatar of the family of derivatives

{L'(:. 10, xadoy) : (k,\) € X'},
which, combined with (1.3), suggests®
L,(16a) = “a p-adic avatar of {L'(1,1I, x ad’c,) : (k,\) € X'}”
x “a p-adic avatar of {L'(1,IL,) : r € Spec(Rn)"}”.

This is the form of our factorisation conjecture for the p-adic L-function L,(16a), as well as its algebraic
variant concerning modules of leading terms.

Remark 1.2. The double-wall-crossing principle can be thought of as follows. The p-adic limits of the explicit
GGP formulae on the region (a) approximating the points in the region (c) (which give rise to Ly(16a)) )

are p-adic avatars of degree—2 arithmetic GGP formulae” in the region (c). |
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6This insight can be made explicit in the context of endoscopic families; cf. §6.

"This presently remains a fantasy, even in a conjectural form. However, in the degenerate picture we have placed ourselves
in, one may cast this as a pair of arithmetic GGP formulae. Our Theorem 5.23 is the algebraic counterpart of a BDP (“p-adic
GGP”) formula of degree 2 for II X g X €.
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2. HIDA FAMILIES AND p-ADIC L-FUNCTIONS

In this section, we recall the notations and properties we will be using around Hida families, both in
the GLs and in the Siegel cases, and also around p-adic L-functions, where most of the results are still
conjectural. We also fix the general assumptions that will be imposed along the work.

2.1. Hida families. Let p be an odd prime and let O be the ring of integers of a finite extension E of Q,.
Let us put [-]: Z) < A(Z))* to denote the natural injection. The universal weight character x is defined
as the composite map

X: Go *25% ZX — A(ZX)X,

where Xcyc is the p-adic cyclotomic character. We take our normalisations in such a way that the Hodge-Tate
weight of the cyclotomic character is —1.
2.1.1. A ring homomorphism v: Ay 1= A(Z;) — O is called an arithmetic specialisation of weight k € Z
if the compositum Gg RN A%, 5 O agrees with x’gyc on an open subgroup of Gg. We also regard integers as
elements of the weight space via

Z — Homo (Aws, O) n— (U [z] = 2™).
For an integer k, we define A(Z;)(k) ~ A(1+ pZ,) as the component determined by the weight k.
2.1.2. Weleto =Y a,(0)q™ € Ry[[q]] denote the branch of the primitive Hida family of tame conductor

N, and tame nebentype ¢,, which admits a crystalline specialisation f, of weight k. The universal weight
character x give rise to a character

Xo: Go 25 A%y = AMZS) B 5 RX.
2.1.3. By the fundamental work of Hida, there is a big Galois representation
po: Gox — GLa(Frac(R,))

attached to g, where ¥ is a finite set of primes containing all those dividing pN,cc0 and Frac(R,) stands for
the field of fractions of R,. We denote by T, C Frac(R,)®? the Ohta lattice, where T, corresponds to M}
in the notations of [KLZ17a], which realize the Galois representation p, in the étale cohomology groups of
a tower of modular curves.

2.1.4. 'We make the following assumptions.

Assumption 2.1. The Galois representation T, satisfies the following conditions:

(a) The residual Galois representation of Ty, is irreducible.
(b) The residual Galois representation is p-distinguished (that is, its semisimplification is not scalar).

We remark that Condition (a) assures that any Go-stable lattice in the field of fractions is homothetic to
T,, whereas Condition (b) supplies one with an integral p-ordinary filtration. We assume, unless explicitly
stated otherwise, that these assumptions hold for all Hida families on GLs that appear in this work. We also
assume the analogous conditions for all modular forms (i.e. not only for the families).

2.2. Preliminaries on Siegel modular forms. We denote by G the group scheme GSp, (over Z), defined

1

with respect to the anti-diagonal matrix J = 1Y ); and we let v be the multiplier map G — G,

-1
where G,, is the multiplicative group. We define H = GLy X1, GL2, which we embed into G via
a b

) [ a b a v } R a v
L c d)’\cd d d d
c

Let B¢ for the upper-triangular Borel subgroup of G, and Ps; and Pk, for the standard Siegel and Klingen

parabolics containing Bg, so that
* x * * k k *k
ra= () ma= ().
* *
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We write By = 1~ 1(Bg) = t~(Ps;) for the upper-triangular Borel of H.

2.2.1. Let II be a cuspidal automorphic representation of G(A¢), with I, of weights (k1,k2), with k; >
ko > 3. Let us put r; := k; — 3, for i = 1,2. Let {«, 3,7,d} be the Hecke parameters of II, in the sense of
[Pil20, §5.1.5] or [LSZ22, Theorem 10.1.3], where we borrow our conventions. More precisely, they are the
reciprocal of the roots of a precise Hecke polynomial at p, P,(X), defined in Theorem 10.1.3(3) of loc. cit.
This means that we can normalize («, 3,7,9) in such a way that all four are algebraic integers of complex
absolute value p(*1+*2=3)/2 "and ordered such that ad = By = p*1 %273y (p) and 0 < vy(a) < ... < v,(0).
Here x11 denotes the Dirichlet character associated with the central character of II.

2.2.2. Let Iwg(p) denote the Iwahori subgroup of G associated with Bg. We consider the following operators
in the Hecke algebra of level Iwg(p), acting on the cohomology of any of the sheaves introduced above:

e The Siegel operator Us; = [diag(p, p, 1,1)], as well as its dual U¢; = [diag(1, 1, p, p)].
e The Klingen operator Uy = p~"2 - [diag(p?, p, p, 1)], as well as its dual U, = p~"2 - [diag(1, p, p, p?)].
e The Borel operator Up = Us; - Uk, as well as its dual Uy = U, - Uy,
A Hecke eigenform is called Siegel (resp. Klingen) ordinary if the corresponding eigenvalue is a p-adic unit.
It is called Borel ordinary if it is both Siegel and Klingen ordinary.
Throughout this article, we assume that II, is Borel-ordinary, which implies that it is both Klingen-
ordinary and Siegel-ordinary. In this case, we may and will assume that («, 8,7, d) have p-adic valuations
(0, 7o + 1, r1 + 2, r1 + 72 + 3), respectively.

2.3. Families of (Borel-ordinary) Siegel modular forms. We recall the definition of a Hida family II,
following the notation of Loeffler—Zerbes [LZ20] and [L.Z21a, §10.4]. Note that in the former reference, the
authors consider only one parameter (what they call a Siegel-type Hida family), allowing parallel variation
of the weights. Moreover, since we are concerned here solely with Borel-ordinary families, we may and shall
work in the setting of [TU99|.

2.3.1. We begin by a discussion of the notion of a family of Siegel automorphic forms, following the con-
ventions of Tilouine-Urban [TU99| and Loeffler—Zerbes [LZ20], [LZ21a]. We also refer the reader to [ATP15]
for a more detailed account of the geometry of Siegel eigenvarieties.

2.3.2. Let K be a finite extension of Q,, and let O denote its ring of integers. Following [TU99], let us set
R = O[[T1,T3]]. Let Q@ = Spf(R)(O) denote the weight space. For any pair (a,b) with a > b > 0, define
the arithmetic prime P, ; of A as the kernel of the homomorphism A — O given by T3 — (1+p)® — 1 and
T +— (1 4+ p)? — 1. Such a morphism is called a classical point of .

2.3.3.  Following [BP20] and, in particular, [.Z21a, §10.4], there exist graded coherent sheaves H*(M& 5, )

cusps,w;
on Qp for 0 < j,k < 3, whose pushforward to €2 is the corresponding Hff,j’an(Kp, vy, cusp) (B, Here we
adopt the conventions of [LZ21a, §9.5] for cuspidal, locally analytic, overconvergent cohomology; in particu-
lar, w; denotes the Kostant representative defined in §2.1 of loc. cit., K? denotes the level structure, and vy
is a suitable character of the torus.

2.3.4. Given any finite flat extension R of R, let Q := Spf(7~€)((’)). This space is equipped with its natural
p-adic topology and with a natural projection wt : Q-0 (the weight map) induced by the inclusion of
O-algebras R C R. A point x € Q such that wt(z) is a classical point of € is called a classical point of §~2,
and the set of all such points is denoted by §~2C1. Recall that we denote by x the cyclotomic character, and
by ri, ro the universal characters associated to the two factors (associated with the coordinates Ty and T%)
of the weight space.

2.3.5. We are now in a position to introduce the notion of a family of automorphic representations, which
will be used in our subsequent applications.

Definition 2.2. A family of automorphic representations Il of tame level Ny and tame central character
X1 is the data of a finite flat extension Ry of R satisfying the following two conditions:

(a) The restriction of Hk(/\/l;{gﬁffuj) to Qpy is zero if j+k # 3, and the sheaves S*(II) = H* (M5, L)
are either free over O(Qy) of rank 1 for all k, or free of rank 1 for k = 1,2 and zero for k =0, 3;
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(b) For any classical specialisation II of II of weights (r1 4+ 3,72 + 3), the center of G(Af ) acts on the
specialisation S*(IT) of Sy (IT) by | - |[~("+72) xqp. ]

We assume until the end of our paper that II is Borel ordinary. This means that all its classical speciali-
sations are (equivalently, some specialisation of regular weight is, cf. [LO14, Theorem 2.5 (3)]) so.

2.3.6. According to [TU99, §7], there exists a big Galois representation
po: Gsz — GL4(FI‘&C('R,E))

attached to II, where ¥ is a finite set of primes containing all those dividing pNgoo and Frac(Rp) stands
for the field of fractions of Ryj.

2.3.7. Thanks to our running Borel-ordinarity assumption, there exist unramified characters o = oy,
B = Bux>T, ¥ = yux* T2, and § := dpx™ 213 of G, such that

(&(Frobp), B(Frobp), A’}/i(FI‘Obp), 6(Frobp))‘n _ (a/,prz+1ﬁ/7pr1 +1,y/’p7"1+'r'2+351)

for any specialisation IT of II, where (o', 3’,7,d’) are the Satake parameters of II at p.

2.3.8. Assumptions. We shall work under the following assumptions (a)—(c) on the Galois representation pr.
(a) The residual representation (given as in [LO14, Definition 2.3]) of pp is irreducible.

As explained in [LO14, Theorem 2.5], this condition implies (thanks to [TU99, Urb05]) that there exists a
Galois stable lattice Tj; C Frac(Ry)®?, that we fix once and for all.

(b) The characters &, 3, 7 and 4 are non-trivial modulo the maximal ideal of Ru (cf. the hypothesis
(NA) below) and pairwise distinct.

Conditions (a), (b), our Borel-ordinarity condition applied with Nakayama’s lemma imply that there exists
a basis of Ty with respect to which the action of Gq, on the Galois representation is upper triangular.

(¢) The local ring Ry is regular.

2.3.9. The condition that Ry be regular can be achieved on passing to a sufficiently small wide-open
neighbourhood of about a classical point with sufficiently regular weights. In what follows, we shall do so
without further pointers to this arrangement.

We assume, unless we explicitly state otherwise, that these assumptions hold true for all Borel-ordinary
families that appear in this article. We also assume the conditions analogous to (a)—(c) for all the automorphic
forms (and not just for the families) that are relevant to our discussion.

2.3.10. For Ry and R, as above, let us put Ry := Ru®z,Rs®z, Rs and Rz = Ru®z, R

2.4. Degree—16 triple products. Let Il x 01 X 09 be an automorphic representation of GSp, X GL3 x GLj.
We have a degree—16 L-function L(s,II X 01 X 09) associated with the tensor product of the degree-4 (spin)
and degree-4 (standard) representations of the L-groups of GSp, and GLy X GLy. Our main results will
concern products of the form II x ¢ x ¢¢, where 0¢ denotes the contragradient automorphic representation.

If II, o1, and o9 are algebraic, then this L-function is expected to be motivic, and in particular, we can
ask whether it has critical values. As in the previous section, suppose that the L-packet of II corresponds to
a holomorphic Siegel modular form of weight (k1, k2), with k1 > ko > 3, and that o1 (resp. o3) corresponds
to a modular form of weight ¢; (resp. ¢2). Then we expect that there exist motives M (II) (of motivic weight
k1 + k2 — 3), M(01) (of motivic weight ¢; — 1), and M (o2) (of motivic weight co — 1) such that

k1+k2+61+02
w = 5

L(S,HXO’lXO’Q):L(Sﬁ*’UJ*%,M(H)@M(Jl)(@M(Ug)), —2.

2.5. p-adic L-functions. Let II (resp. ¥ := g; ® 05) be a cuspidal Borel-ordinary family of forms on GSp,
(resp. on GLg x GL3). We shall denote by (P, Q1,Q2), where P corresponds to a specialisation of II and
Q; to a specialisation of g, specialisations of R4. We denote its weights by (k1, ke, ¢1,¢2) whenever P is of
weight (K1, k2), and g, is of weight ¢;.



2.5.1. Regions for GSpy xGLs x GLy. In [LZ21b, §2.3], the authors explicate the “GGP regions”, deter-
mined in terms of the interlacing relations of the quadruple of weights (k1, k2, 1, ¢2), given by the following
inequalities.

Region (a). C1,C2 2 1, kl + kg -2 S Cy — C1.

Region (b). C1,C2 Z ]., kl 7]@2‘%2302761 §k1+k274, k1+k'2 Scl+02.

Region (c). ¢1,c2 > 1, |ea — | < ky — ko, k1 + k2 <1 +ca.

Region (d). cr,c0> 1, k1 —ko+2<co—c1,c1+co <ki+ko—2.

Region (e) c1,c0 > 1, |02 —Cl| <ky—ko, k1 —ko+4<ci4+cy<ky+ky—2.

Region (f). ¢1,c0>2, ¢1+co <ky — ko +2.

One also has the GGP regions (a’), (b’), and (d’), in which the roles of ¢; and ¢y are reversed.

2.5.2. Conjectures for GSpy xGLg X GLo: p-adic L-functions. With the notations and conventions above,
Loeffler and Zerbes in [LZ21b] conjecture the existence of p-adic L-functions (one for each GGP region). In
this subsection, we recall their formulation, with a slight strengthening that allows variation in the GSp,-
factor. We recall from [L.Z21a, §10] the notion of good points (cf. Definition 10.4.2 in op. cit.).

Conjecture 2.3. For each ¢ € {a,d}, there exists an element
Léo) (Il x ¥) € Frac(l)
with the following interpolation property:

A3, 1p @20, 0,)
N (P) - Q3 (I x (P, Q1,Q2))

LI x £)*(P,Q1,Q2) = Z4(P,Q1,Q2) - £ @ 2)(P, Q1, Q2) -

for all good points (P, Q1,Q2) whose weights (k1, ke, c1,c2) belong to the region o. Here,

o Z%(P,Q1,Q2) is a factor depending on the choice of tame data (that will not be made precise);

o &L x X)(P,Q1,Q2)) is an Euler-like factor at p (given according to the recipe of [CPR89], see also
[LZ21D), §4.3);

o Q% (=) is an archimedean period that is described according to the recipe of Coates and Perrin-Riou
[CPR&9] and C%O)(P) is a p-adic period (cf. Remark 2.4);

e A(—) is the completed L-function .

Remark 2.4.

i) The p-adic period C§°) arises to account for the ambiguity in the choice of Deligne’s canonical period.

ii) One may utilise an automorphic archimedean period Q2 (—) in place of Deligne’s canonical period (as in
[CPR&Y]), and this period can be described explicitly. When ¢ = a, one expects the periods to be given
by the square of the Petersson norm of the corresponding GLe-factor (suitably normalised as in [Hsi21]);
cf. [LR24, §1.3]. Partial evidence for this expectation was obtained by Bécherer and Heim [BHO6] in the
Saito-Kurokawa case. When we work with these periods, one can take C§a) =1L

When ¢ = d, the recent work of Liu [Liu24| in the GSp, X GLy case expresses the period as a product of
the Petersson norm attached to one of the GLs-factors and a modified Petersson norm of the GSp,-factor;
see §3.3.3 of loc. cit. We expect the same also in the setting of Conjecture 2.3 with ¢ = d. With this choice,

one can take Cid) =1 n

Remark 2.5. Conjecture 2.3 can be stated, as in [LZ21b], in terms of the squares of Gan—Gross—Prasad
periods (and the appearance of a square on the left is due to that). This is especially relevant to our study,
as our point of view rests crucially on the (conjectural) interplay between arithmetic GGP and GGP for p-
adic families (cf. our discussion in the introduction, where this relationship has been emphasised in scenarios
where it is unconditionally established). [ |

Remark 2.6. In GGP regions (b) and (e), the Bloch-Kato-Tate conjecture predicts the existence of families

of cycles classes, and the p-adic GGP philosophy envisages a link to the p-adic L-functions of “adjacent

regions”. The case of region (e) is the subject of by Hsu, Jin, and the third-named author, but region (b)

seems to be currently out of reach. [ |
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2.5.3. A conjectural p-adic L-function for GSp, x GL3. As in the previous sections, we shall notate by (k1, k2)
the weights of the Siegel modular form and let ¢ denote the weight of an elliptic modular form, where in the
present section, we shall consider Gelbart—Jacquet lifts of this form to GL3.

Conjecture 2.7. There exists an element
L,(12e) = Lz(f)(ﬂ x ad’(a)) € Frac(l)

that is characterised by the following interpolation property: For all good points (P, Q) with weights (k1, k2, ¢, c)
in the region (e), we have

A(3,p ® ad’(g)q)

LI x ad’(0))(P, Q) = 2§ (L x ad’())(P, Q) - £47 (L@ ad’(2)) (P, Q) - ¢S (P) - Q9 (I x ad’(c)(P, Q)

Here:
. de)(ﬂ x ad’(0))(P,Q) is a factor that depends only on the tame data (which we shall not make
explicit here);
. 5156) (IT x ad®(0))(P, Q) is an Euler-like factor at p (given according to the recipe of [CPR89]);
. Q(OZ)(—) is the Coates—Perrin-Riou archimedean period and Cée)(P) is a p-adic period (cf. Re-
mark 2.4(1));

Remark 2.8. We briefly review the restriction of GGP regions to the locus ¢; = ¢, to clarify why we consider
the conjectural description of L,(12¢) only when ¢ = e.

In regions (a), (b), and (d), there are no classical specialisations with ¢; = ¢3 in the non-endoscopic cases.
Moreover, when ¢(II) = —1 (as we assume in our treatment), the central critical L-values identically vanish
in the region (c). One is therefore left with the region (e), where the weights (k1, k2, ¢) satisfy

k’lik’g, QSCSklfl, k17k2+4§2c§k1+k‘272.

2.6. Factorisation conjectures. We are now ready to state our factorisation conjectures.

2.6.1. In what follows, we shall consider the scenario where ¥ = o x ¢¢ in Conjecture 2.3. Our aim in
this section is to discuss, in light of Artin formalism, the expected factorisation formulae for the p-adic
L-functions

2 . 2
LI x ad0)? := L (I x X) o€ {a,d},

lei=as
which is the main purpose of study of this paper.

2.6.2. Based on the wall-crossing principle (BDPg) from the introduction, we formulate the following
factorisation conjecture.

Conjecture 2.9. Assume that e(Il,) = —1 for some (equivalently, all) specialisations I, of II. Let Log,,
denote the Perrin-Riou exponential map of §4.3.1. Then the family® LFTH of Lemma—Flach class (cf. [LSZ22],

Theorem 9.6.4) is contained in the Selmer group R'Tt(Gq.x, Tﬂ, Ag2) (see §3) and we have the factorisation
LY x ad 0)*(P,Q, Q) = Ca(P) - L (I x ad® 0)(P, Q) - Log, (LF}y),
where Cq s an element in Ru[l/p].

2.6.3. We now formulate the second factorisation conjecture, which is based on the double-wall crossing
principle (BDPY).
Note that in this case, it follows from our running assumptions that

e(l,) = —1 = e(I1,, x ad’a,), V(k,\) € &,

Hence, the Bloch-Kato—Tate conjecture predicts the existence of a supply of cycles (associated to both
families of degree-4 and degree-12 motives) to account for the systematic vanishing of the central L-values.

8The construction of this class is not complete, but a key step in doing so is [LSZ22, Theorem 9.6.4].
11



Conjecture 2.10. Assume that e(I1,)) = —1 for some (equivalently, all) specialisations of I, and that the
family I1 does not admit endoscopic specialisations. Let Log, denote the Perrin-Riou exponential map of
§4.3.1. Then the family LFTH of Lemma—Flach class is contained in Rl].—‘f(GQ’E,Tﬁ, Ag2) and there exists

an element ATH@)adg € erf(GQ7E,Mg,tr*Ac) (see Definition 3.1), “a family of twisted diagonal cycles”
associated to Ty ® ad® T, such that

LI x ad 0)*(P,Q, Q) = S(M,II) - Ca(P) - Log, (Al aq,)” - Log, (LFL) ,

where Cq, s a non-zero element in Ryg[1/p] that interpolates explicit algebraic fudge factors, and S(M,II) is
the factor’ given as in §5.2.2.

The conjectured factorisation statement therefore takes the form of a degree-2 p-adic GGP formula that
we have alluded to in §1.5.2 (in the degenerate scenario we have placed, where the underlying family of
motives decompose), and it should be thought of as a higher BDP / p-adic Waldspurger formula that we
have discussed in §1. We refer the reader to §6 where we present evidence for the existence of the family
of cycles AlT'I@ado— as well as to variant of this conjecture in endoscopic cases'’. We also refer the reader to
Theorem 5.13 and Corollary 6.18, where an algebraic form of this conjecture is established.

3. SELMER COMPLEXES, PERRIN-RIOU LOGARITHM, AND EICHLER—SHIMURA MORPHISMS

3.1. Generalities on Selmer complexes. Suppose that 7" is a representation of Gg over R unramified
outside a finite set of places 3. Suppose that the restriction of T' to G), := Gq, fits in a short exact sequence

0—FT—T—T/F'T—0

of Gp-modules.

3.1.1. Greenberg local conditions. For v € ¥, let I, C G, be the inertia subgroup and let Fr, € G,/I,
denote the geometric Frobenius element. We consider the following Greenberg local conditions (in the sense
of Nekovar) on T on the level of continuous cochains:

o fCG,, FT) if v =p,
= {C°(GU/L,,T%> ifv € Z\{p}

These are equipped with a morphism of complexes
uh L US(T) — C*(G,,T), forallveX.

We note that when v # p, the complex U, (T) is quasi-isomorphic to the complex (TI" RAEN TI”>

concentrated in degrees 0 and 1.
In this paper, we assume that the following Tamagawa number triviality hypothesis:

Tam) H'(I,,T) is a free R-module for any prime v € %.

Under this assumption, UM (T') is perfect for each prime v € ¥ (see [BS25, §4.3]), and hence the Selmer
complexes that appear later are also perfect.

3.1.2. Selmer complezes associated to Greenberg local conditions. Let A be a Greenberg local condition. We
define the Selmer complex associated to (7', 3, A) on setting

resszg

Ct (Gou, T, A) i= cone (C*(Ga,5, T) @ U (T) C1(T))[-1].
We denote the corresponding object in the derived category by RI't(Gosx,T,A) and its cohomology by
R°T¢(Ggyx,T,A). Recall that we may compute the Euler—Poincaré characteristic of the complex by

X(RT¢(Go.x, T, A)) = rank(T°=!) — rank(Z+T).

9We record here for the convenience of the reader that S(M,1I) is a p-adic period that measures the p-local relative positions

T
TI®ad o

slightly more detailed discussion.
10The reason why these cases are omitted from Conjecture 2.10, and why the analogues conjecture assumes a different shape
in the endoscopic scenario, is explained at the start of §6; see also §3.7.2.
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3.2. The cases of GLy and GL3. Let g be a normalized cuspidal eigenform of weight £ > 2 which is new
away from p, and let V,(g) denote its associated Galois representation over a sufficiently large local field
E/Q, containing the image of the Hecke field of ¢ under the fixed isomorphism ¢,: C — C,. We assume
henceforth that V,,(g) is p-ordinary and crystalline. We let a denote the unique root of the Hecke polynomial
of g at p which is a p-adic unit'!. By slight abuse of notation, we denote the unramified character of G,
mapping the geometric Frobenius to a also by a.

3.2.1. The representation V,(g) admits a G-stable filtration
T Vp(9) + Vilg) = FV,(9) 2 F'Vo(g) 2 F2V,(g) = {0},

=

where G, acts on the graded piece 97V, (g) via a and via ' ~a=" on ¥r'V,(g).

Moreover, .7 V,(g) is the exact the annihilator of .#2~V,,(¢¢) with respect to the Poincaré duality pairing,
where g¢(2) = g(%) is the conjugate form. We remark that we have a natural isomorphism Vj,(g)* =~
Vp(g°)(¢ — 1) induced from Poincaré duality. We put

FVy(9)" 1=Hom(V,(9) /-7~ V,(9), E) = F'V(g*)(L = 1).

3.2.2. Similarly, the adjoint Galois representation V,(ad’(g)) = ker (V},(g) @ V()" =5 E) admits the
following filtration of G,-modules:

Vp(ad®(g)) = OV, (ad’(9)) 2 F1Vj(ad’(g)) 2 F2Vp(ad’(g)) 2 F3Vy(ad’()) = {0}.
Here
FW,(ad’(g)) := ker(ad®(g) — Hom(F'V,(g), 97V, (g))),
T2,y (ad’(9)) = F'Vy(g) @ F 'V, (9)".
Note that the G,-action on each of the one-dimensional graded pieces
GV, (ad°(9)) 1= Vp(ad(9))/F Vp(ad®(9)),  #r'Vy(ad’(g)) i= F 'V, (ad®(9))/ FVy(ad’(g))
Gr°Vy(ad’(g)) = FV,(ad’(g))

¢ respectively.

is given by ax‘~!, 1, and a= 'y~
3.2.3. The analogous definitions are available also when g is replaced by our Hida family o.

3.3. Siegel modular forms. Let IT be a cuspidal automorphic representation of GSp,,q of weight (k1, k2)
with trivial central character. We assume that k1 > ko > 3 and write r;1 = k1 — 3 and 79 = ko — 3. As in
§2.2, let (a, 8,7, ¢) stand for the Hecke parameters of the Galois representation V,,(II), with v,(a) < v,(8) <
vp(7y) < vp(6). We also assume that IT is not a Saito-Kurokawa lift.

We recall that one says that II, is Klingen-ordinary if pk"z—& is a p-adic unit and that it is Siegel-ordinary
if a is a p-adic unit. We say that it is Borel-ordinary (or simply, ordinary) if it is both Klingen and Siegel
ordinary. In that case, v,(a) =0, v,(8) = k2 — 2, v,(y) = k1 — 1, and v, (0) = k1 + k2 — 3.

3.3.1. Duality. We henceforth assume that II, is Borel-ordinary. Under the assumptions of §2.3.8, the Gq,
representation V,,(II) has a complete flag of G,-stable subspaces .% *V,,(I), where .%V,,(II) is of codimension
i (where 0 < i < 4). Further, following our previous discussion the Hodge-Tate weights of V,(II) are 0,
ko —2, k1 — 1, and ky + ko — 3 (cf. [LSZ22, Theorem 10.1.3.6]). Then, as noted in [LZ19, §6.3] and since the
central character yr of II is trivial by assumption, we have a symplectic pairing
Vp(II) @ V,(II) — E(—k1 — k2 + 3)
induced by Poincaré duality. Under this pairing, .#V,(I) is the exact annihilator of .Z4~%V,(II).
Let us put
V() = () (gt — 1)
so that the pairing above gives rise to the symplectic pairing V,f (II) ® V,f (IT) — E(1).

3.4. Graded pieces.

HMore precisely, the p-adic valuation of the image of a under the chain of fixed embedding Q ENTOREN Cp is 0.
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3.4.1. Let us consider the filtration

V,(I1) = Z°V,(I1) 2 Z 1V, (1) 2 F2V,(IT) 2 77

=
H
U
)
=
=
S
|
—~
o
nat

with graded pieces

G V(1) = FOV, (I F W (1), v V(1) = F1V, (1) /. F2V,,(I0),
GV (IT) = Z2V,(I)/ F2V, (1), G V(1) = F2V, (1) /F V(1)

The crystalline Frobenius ¢ acts on Dcris(gro V,(ID)), ..., Dcris(gr?’ Vp(II)) by «, B, 7, and ¢, respectively.

3.4.2. Families of Siegel modular forms. Recall our conventions for (two-variable) families of ordinary Siegel
modular forms fixed in 2.3. The analogous definitions are available also when II is replaced by a Hida family
II, satisfying both the Klingen and Siegel ordinary conditions, as discussed in [L.Z20, §23| and [LZ21a, §10].
In particular, we may still consider a filtration

Ty = F°Tn 2 F'Tn 2 F%Tn 2 F3Th 2 F T = {0},
as well as the corresponding graded pieces
G0 Ty = F°Ty ) F T, %' Ty = F'Tu/F>Th,
G2 Ty = F2Tn) F3Tu, 9v° Ty = F3Tu/F Th .
As before, let (kq, ko) be the universal characters associated to the 2-dimensional weight space Q2. We set
T =Ty (e —1).
Then there is a skew-symmetric pairing

TH® TQ — Rﬂ(kl + k2 — 3)7

with respect to which Z'Ty; is the exact annihilator of Z#*~Tyy; equivalently, there is a skew-symmetric
pairing

T} ® T — Ru(1).
3.5. Triple products. With the assumptions of 3.2 and 3.3, let g be a modular forms of weight ¢ and II

a cuspidal representation of weight (ki, ko) with trivial central characters and ky > ko > 3. Let us put
c::@—i—ﬁ—l Let

V= V() @ Vi (9) © Vy(g°)(e) = V() © Vy (g) @ Vi (9)".

We also define a Galois stable Og-lattice T' C V, which comes associated with the choice of lattices T> C V,(?)
(which we henceforth fix). We put

M:=T{®ad T,, M[1/p]:= V() ®ad’ V,(g).

3.5.1.  'We shall describe the corresponding Greenberg local conditions associated with the regions of weights
described in [LZ21D, §4|. These will be given in terms of G)-stable subspaces of V' of dimension 8, as described
in the definition below. To highlight their relevance to the corresponding region, we shall notate them by
F?JrX with ? = a, b, ¢, d, e.

14



Definition 3.1. We put
FIV =V F'V,(9) ® V,(9)
FV =7V © Z'V,(9) @ Vp(9)" + Z°V](I) @ V,(9) ® F 'V, (9)*
+V () ® FVo(9) © FVo(9)",
FIV = Vi) ® Z'V,(9) ® F'V,(9)" + 72V, (1) @ F 'V, (9) @ Vy(9)*

)®
+ £2VJ(H) ® Vp(g) ® ﬁlvp(.‘])* )

Fiv =7V @ F'V,(9) @ V,(9)" + Z°VI 1) @ V,(9) @ V,(9)*
FIV =71 @ V,(9) @ Vo(g)* + F'VI(I) @ F'V,(g9) ® F'V,(9)*
2771

+ 72V @ F1V,(9) @ Vi(9)* + F2VII) @ Vo(g) @ FV,(9)"

We analogously define F;rT, and put
FfM = im(FfT—TYs M), ?=abecde,

where tr* is the map induced from the dual of the map ad’T, = ker(tr) — End(T}) ~ T, ® T; .
Lemma 3.2. We have the following isomorphisms of Gp-representations.

FIT/(FfTNFT) ~ 9T} © ' T, @ 97T ~ 9:°1},,

FfT/(FSTNFT) ~9r' T} © F'T,  91°T; ~ 4r' T},
Proof. Observing that

FfTNFT=2"T} ¢ F'T,0 T} + T}, © F'T, ® F'T;
and

F}TNFT=T) 0 7'T,® 7T + 7T} @ F'T, 0 T} + T}, @ T, ® F'T} ,

the asserted isomorphisms follow from a direct calculation. O

3.5.2. The analogous constructions are available when II is replaced by a Hida family II of Siegel modular
forms, and g replaced by a primitive Hida family ¢ of elliptic modular forms. We note that the conjugate
family o€ is defined as ¢ ® Xgl, where x, is the tame nebentype of the family o.

3.5.3. Greenberg local conditions for families.
Definition 3.3. For ? € {a,b,c,d, e}, let
Ff T o= FT] @, Rs.
We also define the Greenberg-local condition tr*A, = A(F;" M;,L ) by
FF M = im(FF Ty — T — M)).

Lemma 3.4.

(a) We have
rankngF;M;: =38, ranleF;M;f =1, rankRiFng = 6,
rankg, Fy Mj =7, rankg, F.F Ml =6.

(b) We have the following natural short exact sequences

0 — F Mj — Ff M} — 91" T @ 91" ad’(T,) — 0,

0— FfM] — Ff M — 90" T @ 91" ad(T,) — 0,
and
0— FFM] — Ff M — @' Tj @ 91" ad*(T,) — 0.

Proof. This follows from the definitions. O
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3.6. Selmer complexes (bis). For ? = a,b,¢,d, e, let us denote by A, the Greenberg local conditions (in
the sense of §3.1.1) on TST given by 1,;‘ : F;‘Tg — Tg. We denote by tr* A, the Greenberg local condition on

M;: that is given by f : FJM;I — M;:
Definition 3.5. Let us denote by res,/, the composition

resy

R'T¢(Gos, Mi, tr"Ay) =% H} (G, Fif M3) — HY(G,, F,f My /F, M) = HY(G,, 91T}, & 91" ad*(T},))
~ Hl(Gp,groTﬂ) ®ry R3,
where the first map is given by
RITt(Gos, M{, tr*A) 3 ¢, (e0), (M)] > resy ([d]) = ) ([cp]) € H (G, F M),

the third arises from Lemma 3.4(b), and the final isomorphism follows from the fact that ¢r' ad®(T,) ~ R,
as Gp-modules, as explained in §3.2.2. Similarly, we define the maps

resy .+ R'T¢(Go,x, My, tr"Ay) — H(Gy, FyF M /FFM]) ~ HY(G,, 97" T})&r,Rs |
resqe © R'T¢(Gos, M, 0" Ag) — HY(Gy, Ff MY /F,S M) ~ H' (G, 9r' T} ®ry Rs

3.7. Eichler—Shimura isomorphisms for families of Siegel modular forms. In this subsection, we
discuss how to naturally trivialise the p-local cohomology of the graded pieces of the Galois representations
associated with families of Siegel modular forms, relying on the Eichler—-Shimura isomorphisms proved in
[LZ21a, §11]. As usual, let L be a p-adic field. We borrow the following definition from Definition 10.4.1. of
op. cit.

Definition 3.6. For a fixed family II, let S?(I) be the II-eigenspace in the degree-i coherent cohomology
of the corresponding Siegel threefold, and with values in the p-adic field L. |

Remark 3.7. These spaces are 1-dimensional for each ¢ € {0,1,2,3} for “generic” families of Siegel forms,
whereas for those of Yoshida type, they are 1-dimensional for ¢ = 1,2, and 0-dimensional when ¢ =0,3. W

3.7.1. Let us fix a crystalline specialisation II of II of weight (r1+3,r2+3), with 71 > 7. Then Dqis(V},(I))
is endowed with a decreasing Hodge filtration

{0} = Fil ™V, (I1) € -+ C Filiga,V,(I1) C Filiil V(I1) C -+ € Filfy, V(1) := Deia (V, (I1))

with Grﬁdg Vp(II) := Filﬁdng(H)/Filﬁzlng(H) fori=0,r2+1,71 42,71 +r2+3 (which are the Hodge-Tate
weights of this Galois representation) the non-trivial graded pieces.

3.7.2. Until §6 (where we treat endoscopic cases), we shall work under the following assumption. As we shall
explain, it is especially crucial for the statement of Eichler—-Shimura isomorphism (Proposition 3.9 below).

Assumption 3.8. The family'? II does not admit any critical specialisations, in the sense of Bellaiche-
Chenevier. This means, for any crystalline specialisation IT of II of weight (r1 4+ 3,73 + 3) with 71 > 7o, the
following holds true:

(3.1) Filj 127"V, (I N F 1V, (1) = {0} = Fil =PV, () n.Z'V,(ID),  i=1,2.

]
3.7.3. We briefly review Eichler-Shimura morphisms at a fixed weight. To that end, let us fix a crystalline
specialisation II of II as in §3.7.2, and let us assume that its p-refinement given by {Z*V,(II)} verifies (3.1)
(i.e., this refined pair is non-critical). As usual, we let ¢ denote the crystalline Frobenius acting on V,(II),

and we let a,...,d be the Hecke parameters of II at p, given as in Section 3.3 (which coincide with the
eigenvalues of ). We then have the isomorphisms

SO(IL, L) ~ Grijt* 2 v, (1) S3(I1, L) ~ Griyg, Vo (IT)

3.2 _ .
(3.2) S'(IL L) ~ Grg 7" V() i=1,2,

1261 rather, its p-refinement (I, .7 = {7)).
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induced from the comparison isomorphisms of Faltings and Tsuji (cf. [LZ21a], §11.4). Thanks to our running
non-criticality assumption (3.1), we have the following isomorphisms:

Gr;{ltjgm-‘rgvp(n) = FﬂTch;;;er?) VP(H) - DcriS(Vp(H))/Dcris (ﬁlvp(ﬂ)) = Deris (gro Vp(H)) ’
Deris(%1° V(1)) = Deris(F°Vp (1) = Dy (V, (1)) /Filif 2V, (IT) = Gryrg, V(10

Filfj 57"V, (I1) N Dexis (F 'V}, (I1)) = Filfi 3>~ V,, (1) /Filf 727V, (1) = G~ V,(10)
= Deris(Z V(1) /Deris (F TV, (IT)) = Deyis (91" V(D)) , i =1,2.
Combining (3.2) with (3.3), we arrive at the following (punctual) Eichler—Shimura isomorphisms:

(3.4) SU(IL, L) ~ Deyis (91" V,(I)),  i=0,1,2,3.

3.7.4. We record below the following result due to Loeffler and Zerbes (extending the work of Diao—Rosso—
Wu in [DRW21]; see also [DRW25a]), on the interpolation of the Eichler—Shimura morphisms (3.4) in families
of Siegel modular forms.

Let R be a domain and let X be a free R-module of rank one, which is equipped with a continuous
Gp-action, such that the action of G, on X ®n~! is unramified for some character 7 of I'syc. In this scenario,
we put X° := X @ n~! and define (rather abusively) Deyis(X) := Deris(X°). We remark that X = griTE
have this property.

Proposition 3.9 (Loeffler—Zerbes). Under Assumption 3.8, we have isomorphisms

ES’: S'(II) 2 Deyis (97" Th) Vie {0,1,2,3}.
Proof. This follows from the discussion of [LZ21a, Remark 11.4.1] (see also [LZ21a, Theorem 11.6.3]). O
Remark 3.10. The condition 3.1 is not explicitly assumed in [LZ21a], but it is rather implied by the underlying
assumptions in op. cit. More precisely, the authors explain that the Eichler—Shimura isomorphisms (3.4)
can be interpolated over the locus of good points, cf. [L.Z21a, Definition 10.4.2]. Then a good Borel-ordinary
point of regular weight as in op. cit. is necessarily of numerically-non-critical (in the sense of [BC09], Remark

2.4.6), and therefore non-critical (i.e. it verifies Assumption 3.8). Our emphasis on this assumption is due
to our interest in formulating Eichler—Shimura isomorphisms in the form of (3.4). [ ]

3.7.5. Note that we have a pairing
(3.5) (,-): Dais(9r'Tu(ry + 12 4 3)) X Deis (9% 'Ty) — O(U),  i=0,1,2,3,
that comes about interpolating Poincaré duality pairings (cf. [LZ21Db], §6.3).
Definition 3.11. For any 7 € S*(Il), we denote by
ES}; (1) : Dexis(97° ' Ti) — O(U)
the homomorphism induced from the pairing (3.5). |
We henceforth fix a choice of a Ry-basis {n;} of S*(IL, L).

4. TRIVIALISATIONS AND MODULES OF LEADING TERMS

We recall in this section the notion of the module of leading terms of algebraic p-adic L-functions intro-
duced in [BS25, §5], as well its key properties. We will review the main general constructions in op. cit. §4.2
at a great level of generality. We will then apply these in §5 to the factorisation problem at hand.

We also refer the reader to [BS25, Remark 5.14] for the connection of the module of leading terms to
p-adic L-functions.
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4.1. The setup. For any commutative ring S and any finitely generated S-module M, we put
t t *
M* = Homg(M,S) and () M := (/\SM ) ,
and call ﬂtsM the ¢-th exterior bi-dual of M.

Remark 4.1. When G is a finte abelian group and S = Z[G], the t-th exterior bi-dual ﬂtsM of M is
canonically isomorphic to the Rubin’s lattice AbM of M defined in [Rub96]. The exterior bi-dual is a
natural generalisation of the Rubin’s lattice. |

Let R be a complete Noetherian local ring with finite residue field of characteristic p > 3 and T be a free
R-module of finite rank with a continuous G x-action.

Throughout §4.2, we assume that we have an R[G,]-submodule .# T of T such that the quotient T/ Z+T
is free as an R-module. Then we have the Greenberg local conditions A := A z+; cf. §3.1.1. We also assume
throughout §4.2 that the condition (Tam) holds. For simplicity, let us put

r=7r(T,A) = —x(RI¢(Gox,T,A)) = rankg(T="') — rankg(T/F'T) € Z.
4.2. Modules of leading terms.

Definition 4.2. We let .
8(T,A) ¢ [ R'T(Gox, T, A)

denote the module of leading terms introduced in [BS25, §5.2]. [ ]
The first key properties of the module §(T, A) are recorded below.

Theorem 4.3.
i) The R-module R*T¢(Gqx,T,A) is torsion if and only if §(T,A) is generated by an R-reqular element of
NrRT(Gox, T, A).
ii) Suppose in addition that R is normal. If 5(T, A) # 0, then the R-module R?T¢(Gq x, T, A) is torsion and
charg () R'T1(Gos, T, A) [8(T, A) ) = charg (R*T(Go 5, T, A)) .
ili) For any flat ring homomorphism R — S, we have §(T,A) @ S =0(T ®r S, A).
Proof. This is Proposition 5.5 and Theorem 5.6 of [BS25]. O

4.2.1.  We assume that we have an R[G,]-submodule ZT of .#*T such that

e the quotient FTT/ZT is free as an R-module and

o HY(G), ZTT/FT)=H*(G,, FTT/FT) =0, where T denotes the residual representation of 7.
Now we have two Greenberg local conditions A z+ and A g. For simplicity, let us put

r:=r(T,Agz+) and s:=7r(T,Az).

We also suppose that

e 5s>0.
Since HY(G,, Z¥T/FT) = H*(G,, FTT/ZT) = 0 by assumption, the R-module H'(G,, T/ FT) is
free of rank r — s. Fix an R-isomorphism

o= P it H(G, FTT/FT) =5 R,

1<i<r—s

where p; € Homp(HY(Gp, #TT/ZT), R). Then the homomorphisms ¢1, ..., ¢,_s induce an R-homomorphism
d: ﬂRRlpf(GQ,E, T,Agi) — ﬂRerf(GQ,E, T,Az)
given by
O(z) :=x(— A (p1oresy) A+ A (pr_s 0resy)).
Lemma 4.4. When R s a discrete valuation ring, we have

(5(T, Ag)) = (T, Az).
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Proof. When
rankg im(p ores,: R'T¢(Gox, T,Azt) — R'™5) <1 —s,
we have (@7 oresp) A -+ A (pr_s ores,) = 0, and hence
O(6(T,Az+)) =0.

Since rank gR?T¢(Gq 5, T, Az) > rankp coker(pores,) > 1, the R-module R?*T't(Gq 5, T, A %) is not torsion.
Hence Theorem 4.3(i) shows 6(T, Az) = 0. Therefore, we obtain ®(§(T,Ag+)) =0=3(T,Az).
Suppose that rankg im(p ores,) = r — s. We then have

rankpR?T't (G x, T, Az) = rankgR*Tt(Go 5, T, Az+).

If rankgR*T¢(Gox, T, Az+) > 0, then Theorem 4.3(i) shows ®(§(T,Az+)) = 0 = §(T,Az). Hence we
may assume that both R?T't(Gq x, T, Az) and R*T't(Gq s, T, A#+) are torsion. Put

(7 :=lengthpRTt(Go s, T, Agz) < 400,
(z+ :=length,RTt(Gos, T, Azt) < +00.
Since R is a discrete valuation ring, we have isomorphisms
R'T¢(Gox,T,Az) = R° and R'T(Gosx,T,Az+) = R".

Moreover, by replacing ¢ with other isomorphism if necessary, one can take a basis {e1, ..., e, } of R'Tt(Go.x, T, Az+)
such that

pioresp(e;) =T its 5
Here ;45 ; denotes the Kronecker’s delta, 7 is a unifomizer of R, and a; is a non-negative integer. Note that
ar+ -+ apr—s =g — lp+. Let {e},...,e}} denote the dual basis of {e1,...,e,}. Then the element z €
NrR'Tt(Gox, T, Az+) defined by z(ej A---Ael) = 1is a basis and the element y € NRR'T¢(Go s, T, Az)
defined by y(ef A--- Ae¥) =11is a basis. Then

D(x)(ef A Ne)=x(ef A Nel A(proresy) A« A (@r_s 0Tes,)) = 123 = gbr~tet
Hence ®(z) = 7n‘F ~fr+y and Theorem 4.3(ii) shows that
O(6(T,Az+)) = ®(Rr'r+z) = Rr'Fy = 6(T,Az).
]

Lemma 4.5. Suppose that R is normal. Let M be a torsion-free R-module and let f,g € M. Assume that
for every height-one prime p of R, there exists a unit uy, € Ry such that f = upg in M,. Then there exists
a unit u € R* such that f = ug.

Proof. Since there is an injective homomorphism from Rf + Rg into R, we may assume that M = R. If we
consider R and each R, as subrings of the field Frac(R), the assumption implies that

As R is normal, we have ()1 [tp = R, which shows that f/g € R*. O

Theorem 4.6. Suppose that R is normal. Then

ST, Agz+)) =06(T,Az).
Proof. By Lemma 4.4 and Theorem 4.3(ii), we have

(0(T,Agz+))Rp, =0(T,Az)R,
for every height-one prime p of R. Since both ®(6(T,Az+)) and 6(T,Ag) are cyclic R-modules, we may
apply Lemma 4.5 with
M = ﬂR R'T(Gos, T, As),

taking f and g to be generators of ®(§(T,Az+)) and §(T, Ag), respectively. It then follows that

ST, Agz+)) =06(T,Az).
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4.2.2. Perrin-Riou’s large exponential map. Following closely the discussion in [BS25], we introduce Perrin-
Riou’s large logarithm maps. These, together with the input from §3.7, will be used to formulate our
factorisation conjecture (and also to trivialise naturally various local cohomology groups, e.g. in place of ¢;
in §4.2.1 above).

As in previous sections, let R be a complete local Noetherian domain and let X be a free R-module
of rank one, which is equipped with a continuous Gp-action. Let us assume that X = X° ® n where the
Gp-representation X° is unramified and 7 is a character of I'cy.. We consider the following condition on X:

NA) H?(Gp, X)=0.
We remark that, by local duality, this condition is equivalent to the requirement that H O(Gp,y*(l)) =0,
where X is the residual representation.

The theory of Coleman maps gives rise to an isomorphism (cf. [KLZ17b], §8.2)

(4.1) LOGxe,0 « H'(Gy, X°®2,Zp[[Peyel]) = Deris(X°) @z, ATeye) ,
where D (X°) = (X°® Z‘?)Gl’. Let us define the morphism
(4.2) Logy : H'(Gp, X) — Deyis(X°)
on tensoring the isomorphism (4.1) of R[[Tcyc]]-modules by R[[Teyc]]/(y—1) (where y € I'eye is a topological
generator) and relying on the fact that the natural injection
H (G, XBpRI[Leyel]) /(v = 1) — H'(Gy, X)
is an isomorphism whenever (NA) holds, in which case the map Logy is an isomorphism.

4.3. Leading terms: Arithmetic examples. We apply the general formalism of the preceding subsection
in the context of Galois representations attached to forms on GSp, x GL2 x GLq2, and their subquotients.

4.3.1. Large exponential maps (bis). Using the construction in §4.2.2 with the Rp-module griTﬂ for i =

0,1,2, we obtain trivialisations'3

Log,, : H'(Gp,9r'T]}) —— Deyis(97'T]°) — R,

OggriT;fI

(4.3)

which depends on the choice of the isomorphism 7;. We henceforth fix a choice!® of such 7; and set

Log,,
—

Log,, : H'(G,,9r°T}) Ru,

~

Lo
(4.4) Log, . : HY(Gp 9r'THh) — Ry .
1 2t Log,,
Log, : H (G, ¥9r"Ty) — Ru

Depending on the context (which is determined by which exact sequence in Lemma 3.4(b) is relevant to
our discussion), we will also write Log,/. in place of Log, /.. Also, with a slight abuse of notation, we will
use the same symbols to denote both the maps HI(GP,%TiTﬂ) ®@Rry R3 — R3 obtained from (4.4) via base
change to R3, and the composition of the restriction map at p from a relevant Selmer group with this map.
For example, we denote both of the following homomorphisms by the same notation Log,:

LogC: erf(GQ7Z, Tlif[, Agm) — Hl(Gp, g’I”ZTlT[) — Rﬂv
LOgC: erf(GQ7Z, Mg, tI‘*AC) — Hl(Gp, gTQTIII) ORy Rs3 — Rs.
13We remark that the hypothesis (NA) follows from our running Assumption 2.3.8(b).

14 A natural choice arises from the discussion in 83.7, after passing to the field of fractions of respective universal Hecke
algebra. We will not need this input for our results concerning the factorisation of modules of leading terms.
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5. FACTORISATION OF ALGEBRAIC p-ADIC L-FUNCTIONS

In this section, we establish the factorisations of modules of leading terms. We will carry this out for
regions (d) and (a) separately, as these two cases exhibit fundamental differences (cf. §1.5).
We assume throughout this section, without loss of generality'®, that R is normal.

5.1. Wall-crossing: (d) to (e). Unlike the case “(a) to (b)” (which involves new phenomena), this case
can be handled following the ideas of [BS25].

We note that our main results in this subsection are guided by the (BDP) “wall-crossing principle” (see
§1.5): The restriction of the (conjectural) p-adic L-function for the region (d) to im(Spec Rs —= SpecRy4)
has empty interpolation range. Moreover, im(e3 4) contains a dense set of classical points that fall within the
region (e) (where the global root number equals —1), and the values of the (conjectural) p-adic L-function
for the region (d) at such points in the region (e) should be a p-adic avatar for the first derivative of the
degree-16 L-function at the central critical point.

Theorem 5.1. Suppose that 6(T§, Ag) #0= 5(T£, Ag2). Then,
8(T4, Ag) = Logy (5(M], tr* Ag)) - @5 , Log, (6(Tiy, As)).
In particular, 5(M§,Ae) = Logd/e(é(M;:,tr*Ad)) £ 0.

We will complete the proof of this theorem after some preparatory steps. Before we proceed, let us
briefly comment on the hypotheses of this theorem. If we had!6 § (T?:r ,A4) = 0, then it is easy to see that
the claimed factorisation in Theorem 5.1 reduces to the uninteresting assertion that 0 = 0. The required
vanishing ¢ (TI]-L[7 A g2) = 0 under our running assumption on global e-factors is a consequence of the parity

conjecture for GSp,.

Lemma 5.2. We have the following commutative diagram with exact rows:

. 1
RI4(Gq s, Th, A zs) @y, Rs ————— RI4(Go x, T, Ag) ————— RI(Go .z, Mj, tr* Ag) ———>

+1

RFf(GQ7g,Tﬂ, Agg) ®w§72 Rz —— RFf(GQyE,Tﬂ, Agl) ®w§’2 R3 —— RI’ (Gp, 9‘\1/;@3) ®w§,2 Rz — ,
Here, we have use the shorthand F').F7 = ﬁiTﬁ/ﬁjTﬂ for any i < j.

Lemma 5.3. Suppose that §(T§, Ay) #0.
i) R'T¢(Gox, Tl Azs) = 0=R'T(Gqx, T4, Ag).
ii) We have

RIT (G, MJ, tr* Ag) "= RT(Go.x, T}, As) @y, Rs.

resp
on

H' (G, 7'/ 7?)
resp(lef(Gng, Tﬂ, Ayl ))

®w§,2 R3

All the R3-modules that appear in this diagram are of rank one.
RT¢(Go 5. T£7 Agzs) ®ws, R3
SL(S(MJ, tr* Ag)) '

iii) 6(T4, A4) = Charg, <

5. on base-changing to its normal closure.

16Eslklore conjectures imply that this case should never arise.
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Proof. Since 5(T§, Ag) # 0, we have R'T'¢(Gq 3, Tg, Ag) =0, and the vanishing erf(GQ’Z,Tﬂ, Ags)=0
follows from the first row of the diagram in Lemma 5.2. This concludes the proof of (i). Utilising the same
lemma again, we obtain the following commutative diagram with exact rows:

1
erf(GQ,E,T;, Ad) =0—> erf(GQ,E, M;,tr*Aa) # R2Ff(GQ72,Tﬁ, Ags) ®w§ ) Rs
\Ltr lrcsp \L
R'T:(Go.x, Tﬁ, Agt) Oy, Rz —— IT[I(GP7 fl/f:;) By, Rsa o RZFf(GQ’E,Ti, Ags) Oy, Rs.

The proof of (ii) follows immediately chasing this diagram. Part (iii) follows from the exactness of the
sequence

RlFf(GQ7Ea MPL tI‘*Ad) i) R2Ff(GQ"E’ Tﬁ’ AQS) ®w§,2 Rg

0
S(M, tr*Ag) SU(S(MJ, tr* Ag))
— R2Ff(GQ,E, Tg, Ad) — RQFf(GQ’E, Mg, tr*Ad) — R3Ff(GQ’Z, Tﬂ, Ags) =0
combined with Theorem 4.3(ii). O

Lemma 5.4. Suppose that (5(T§, Ag) #0. Then:
HY(G,, 71/ 79)
I'eSp(erf(GQ’E, T£7 Agl ))
res, (6( M, tr*Ag))

Rwx. R3
RQPf(GQ’Z,Tﬂ, AgS) ®w§72 R3 8.2

SU(6(MJ, tr* Ag))

Chal"R3 ( ) :CharR3

X w§,2 Charg,, (RQFf(GQ,&Tﬁv Aﬂl)) .

Proof. This is an immediate consequence of the exact sequence
HAG, FYFY
res,(R'T't(Go,x, Tﬁ, Az1)) T R°T¢(Go,x, T£7 Ags) Dy, Rs
res, (6( M, tr*Ay)) - SU(S(MJ, tr*Ag))
— RT¢(Gos, T, Azt) @z, Rz —> H* (G, F' )T @z, R3) =0

obtained from the diagram in Lemma 5.2. O
Lemma 5.5. Suppose that 5(T3T, Ag) #£0= 5(T£, Ag2). Then:
R'T(Gos, Th, Az1) = R'Ti(Gox, Ti, As) -

Proof. Recall that R'T'¢(Gq 5, Tﬂ ,Ags) = 0 under our running hypotheses. It follows from global duality
combined with the fact that x(RI'¢(Gq 5, Tﬂ, Ag1)) =1 and the vanishing above that

rankr, R'T (G s, T, Az1) = 1.

This shows that rankREerf(GQ7Z, Tﬂ, A z2) < 1. Moreover, our running assumption that 5(T£, Ag2)=0
implies that R'T¢(Gq s, Tﬁ, A #2) has positive rank, which in turn shows that

rankRERIFf(qug, Tﬂ, Agl) =1= rankRERIFf(GQvg, Tﬂ, Ay2) .

Finally, the quotient erf(GQ7E,T1-TI7 Agl)/RlFf(GQZ,Tgl, A z2) is torsion-free since it is canonically iso-
morphic to a submodule of H'(G,, %' /.#?). Our lemma follows on combining these facts. O
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Lemma 5.6. Suppose that 6(T3, Ag) # 0 = 5(T;I, Ag2). Then:

RT¢(Go.x, Tﬂ, Ags) @ws , R3
SU(S(M, tr* Ag))

Charg, ( ) = @} 5 Log.(8(T, Az1)) Logy . (3(MJ, 1" Ag)).

Proof. Since erf(GQ’Z,Tﬁ, Agi) = erf(GQ,E,Tﬂ, A g2) by the previous lemma, we have an exact se-
quence

HY(G, P2/ 7Y HG, FYF?
reSp(erf(GQ)z,Tﬁ,Ang) reSp(erf(GQ7E7Tﬂ,Agl))

(5.1) — HY(G,, F'/F7?) = 0.

Relying on the fact that the left-most term in (5.1) is torsion (so that the intersection of resp(é(Mg, tr*Ay))
with this module is trivial), we therefore have

HY(G,, Z').73)
res,(R'T(Go,x, Tﬂa Az1))
res, (8(M3, tr*Ag))

®W§,2 R3

Charg,
(5.2)

H(Gy, 7%/ F7)
resp(RlFf(Gng, Tﬁ, Ag‘l)

= w;,Q CharRﬂ ( ) X Logd/e((S(Mga tr*Ad))~

Finally, by Theorem 4.3(ii), we have
Charng (RQFf(GQ)E, Tﬂ, Agz1 )) = CharRE (erf(GQ7Z7 Tﬂ, Agl)/é(Tﬁ, Ag1))

Since res,, is injective, we conclude that

Hl 2 3
CharRH (Gp’ 7 /% ) CharRH <R2Ff(GQ,E7 TITI’ Ag‘l))
resp(lef(GQ,g,TE, Agl) B -

(5.3) _ Char HY (G, 72 73)
"8\ res, (8(T1, A z1))
= LOg(.((S(Tﬁ, Agl))

The proof of our lemma follows on combining (5.2) and (5.3) with Lemma 5.4. O
Proof of Theorem 5.1. The asserted factorisation follows from Lemma 5.3(iii) and Lemma 5.6. O

5.2. Double Wall-crossing: (a) to (c¢). As in the previous section, the wall-crossing principle serves as
our signpost. We summarize the portion of this philosophy relevant to our setting before stating our main
result in this section.

The restriction of the (conjectural) p-adic L-function for the region (a) to im(Spec Rs —= Spec Ry4) has
empty interpolation range. Moreover, im(t34) contains a dense set of classical points that fall within the
region (b) (where the global root number equals —1). However, as a key difference with the case considered
in §5.1, the degree—12 motives associated with these specialisations that belong to the region (b) are no
longer critical. The correct interpretation, therefore, is that the values of the (conjectural) p-adic L-function
for the region (a) at classical points in the region (c¢) should be a p-adic avatar for the second-order central
critical derivative of the complex L-series associated to degree—16 motives with weights in region (c). Note
that the global sign for the degree—16 motives with weights in region (c¢) equals +1, whereas the same for
the degree—12 and degree—4 motives is —1.

Our main result in this subsection is the factorisation statement in Theorem 5.13, which reflects this
principle: The first factor on the right is a p-adic avatar of the central critical derivatives of the complex
L-series associated with degree—12 motives with weights in the region (c), whereas the second factor is the
same for the degree—4 motives.
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5.2.1. Hypotheses. Before we state this result, we record the hypotheses that we will rely on in due course:

AJY) §(Th, Agzi) #0
Ph) 0(Tf, Az2) =0
Py,) 6(Mi tr*A.) = 0.

AT (M, Ay) #0

nVy) 6(T5,A,) #0

Lemma 5.7. If the parity conjecture for classical specialisations of Tﬂ holds true, then so does (Pﬁ)
Consequently, §(T\, Az1) € R'Ti(Go.s, Ti, A z2).

Proof. Since the global root number of the classical specialisations of Tﬂ is equal to —1, it follows that the

rank of RQFf(GQ7E,T£ ,Agz2) is odd. In particular, it cannot be torsion, and the conclusion follows from
Theorem 4.3(i). The second conclusion follows from Theorem 4.6, which tells us that

Logy,. 0(Tf, Ag1) = 6(T, Ag2) = 0.

|
Lemma 5.8. We have the following commutative diagram with exact rows:
RI(Go,5, T, Ao) @z , Rs ————= RIt(Go,x, T, Aa) —— = RI't(Go,s, Mf, tr"Ag) — >
(5.4) —l itr (A) lresp
RI¢(Gq,s, T, A0) ©c; , Rg ——= RI4(Go,5, T, Ag) @ , R ——= RI(Gy, Ti) @cos | Rs % :
Here, we have set Ay := Ago and Ag := A ga.
Proof. This is clear. |

Lemma 5.9. Assume that (n'V7) holds.
i) RIT¢(Gox, Ti, Ao) = 0= RT¢(Gox, T4, Ag).

i) Assume in addition that the parity conjecture for classical specialisations of Tﬂ is valid. Then (AJ%) 18
equivalent to the requirement'” that the morphism

R'T¢(Goy, Tf, Ag2) — HY (G, 9r° T})
be non-zero. When this is the case, erf(GQ7E,T£, Ag2) = lef(GQ7g,T£, Agr).

Proof. Since 5(T;,Aa) # 0, we have erf(GQ7E,T3T7Aa) = 0, and the vanishing erf(GQ727T£, Ag) =0
follows from the first row of the diagram in Lemma 5.8. This concludes the proof of (i).
It follows from the first part and global duality that R'I't(Gq s, T&, Ayp) is of rank 2. Hence, under the

parity conjecture for classical specialisations of TrJr[, the Rp-module Rll—‘f(GQ’Z7T1T[, Ag2) is of rank 1. In
that case, the non-vanishing statement (AJ%) is equivalent to the requirement that the morphism

(5.5) §(Th, Az1) C RTe(Gox, Tl Az2) — HY (G, 9r° T)

be injective (as this is equivalent to the vanishing of Rl].—‘f(GQ’E,T£7 A gs), which is the same as the final
asserted equality in our lemma by global duality), or equivalently, the map (5.5) be non-zero. O

Lemma 5.10. Assume that the parity conjecture for classical specialisations of M; in the region (c) holds
true. Then 5(M§,tr*AC) = 0. Consequently, 5(M§,tr*Ab) € RlFf(GQ’E,Mg,tI‘*AC).

7T his requirement also follows from the non-vanishing of a p-adic Abel-Jacobi map, hence our choice of notation.
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Proof. The proof of this lemma proceeds in a manner identical to that of Lemma 5.7, where we once again
rely on Theorem 4.3(i) and Theorem 4.6, noting that the latter tells us that

Logy/c 5(Mg7tr*Ab) = 5(M§7tr*AC) =0.

0
Definition 5.11. Let us put
F M
FyMf = ker | FfMJ — — c 3 — 9 T @ 9r' ad’(T,)
Ty @ " (FT, @ F1T) - -
=T} ® Z%ad’(T,) + Z3T] ® F'ad"(T,),
]

A direct calculation shows that under the symplectic duality induced from the perfect pairing M?Jf ®M§ —
Rs(1), the module Fb+ M:;f is indeed the orthogonal complement of FbJ-M;: We denote the associated local
conditions on M; by tr*Ai.

Lemma 5.12. If the parity conjecture for classical specialisations of M;: holds true and (n V1) is valid, then
(AJ ]JD\'{) is equivalent to the requirement'® that the morphism

R'T(Go,x, M, tr*Ay) — H'(Q,, 9r* T}))
be non-zero. When this condition also holds, R'T't(Gq %, Mg,tr*Ac) = R'T¢(Go s, Mg,tr*Ab).

Proof. We begin by noting that (n'V{) (which implies that the rank of R'T'¢(Gq,x, Mg, tr*A,) is 2), together
with Lemma 5.10, shows that R'T¢(Go 5, Mg, tr*A.) is of rank one. Hence, the morphism
5(MJ, Ay) € RITt(Go . Mf, tr"A,) — HY(Q, 92° T @ 91" ad”(Ty)) ~5 Ry

is injective (where the containment is explained in Lemma 5.10) if and only if it is non-zero. The kernel of
the first arrow, which is isomorphic to RT¢(Gq x, Mg, tr*Af), vanishes if and only if (AJ]]DM) holds (by The-
orem 4.3(ii) and global duality for Selmer complexes), in which case we also have RT¢(Gq s, M;r, trrAy) =
erf(GQE,Mg,tI‘*AC). O

In summary, in the setting of Lemma 5.9, we have
(5.6) (AJPE) < Log, (5(T£7 Az1) #0<= Log, is non-zero on R'T¢(Gq s, Tﬁ, Ag2).
Likewise, in the setting of Lemma 5.12,
(5.7) (AJ;,”) <= Log, 5(M§, tr*A,) # 0 <= Log, is non-zero on R'Tt(Go 5, M:;r,tr*Ac) .

This explains our notation: (AJPH) and (AJ ZZ)” ) follow from the generic non-triviality of the relevant p-adic
Abel-Jacobi maps for the classical members of the underlying families of motives.

5.2.2.  We are now ready to state one of our main results. This is Theorem 5.13 below; see also Theorem 5.29
for an important intermediate step: the factorisation of § (T3T ,Ay), echoing the double-wall-crossing principle
(from the region a to region ¢). We recall that we work under Hypotheses 5.2.1 until the end of §5.2, unless
we explicitly state otherwise.

As the final preparatory step, we set

S(M, 1) := ddyf (eprdn — endu)?,

where the quantities cpr, das, crr, dip are defined in §5.2.7-85.2.9. We roughly note that S(M,II) measures
the relative positions of the Selmer groups for the families M:;r and T;I (where the modules of leading terms
associated to these live, as well as the relevant Abel-Jacobi images of the conjectural cycles) with respect
to the splittings determined by tr versus tr*; cf. the cartesian square (A) in (5.4) and (B) in (5.8). We
finally remark that such a fudge factor is relevant to the double-wall-crossing scenario as opposed to the

18T his requirement also follows from the non-vanishing of a p-adic Abel-Jacobi map, hence our choice of notation.
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single-wall-crossing, as a reflection of the fact that (conjectural) cycles associated with both factors M;: and
Tlif[ are required to explain the arithmetic meaning of L,(ga)kc) (hence also a comparison of the ambient spaces

where these live in), whereas for Lz(,d) ey (single-wall-crossing scenario), only the (conjectural) family of cycles
associated with Tﬂ are required for the same purpose.
Theorem 5.13. Assume that Hypotheses 5.2.1 hold. Then,
(1§, Ag) = S(M,1II) - Log, A Log, ,(8(M, tr*A,)) - @ 5 o Log, ALog, ,(5(TF, Ay))
= S(M,1I) - Log 0 (M, tr*Ay) - @ 5 © Log, (3(T}, Az1)).
The proof of Theorem 5.13 will occupy the remainder of Section 5.2.

Lemma 5.14. Let S be a reqular ring, and let X1 and X5 be torsion-free S-modules of rank r. Suppose that
[ X1 — X5 be an injective S-homomorphism. Then for any & € (g X1, we have

Charg (ﬂs Xg/Sf(T)(J)) = Charg (ﬂs X1/55> Charg (coker(f)).
Here f): Ng X1 — N X2 denotes the S-homomorphism induced by f.

Proof. On localizing the ring S at a height-one prime, we may assume that S is a discrete valuation ring.
Then X; and X5 are free S-module of rank 7, and hence we may also assume that X; = Xy = S§”. In this
case, this lemma follows from the fact that (g S” = S combined with the fact that f (". 8§ — S is given by
x — det(f)x. O

Definition 5.15. Given an integral domain S and an S-module X, let us denote by X, C X the torsion-
submodule of X and denote by X := X/ Xjo, its maximal torsion-free quotient. |

Lemma 5.16. Suppose that (nV7.) holds true.
i) The following diagram, where all the entries are Rz-modules of rank two, commutes:

erf(GQ’E, M;r, tr*Aa)(—6> R2Ff(GQ7E, Tﬁ, Ao) ®w§72 Rs.

resp
On

H'(G,, Ti})
res, (RIT¢(Go.x, Ty, Ap))

®w§‘2 R?’

i) We have
Ny BTGz, T, Ao)u ® R
6(2) (6(M§7 tr*Aa)>

5(Tf, Au) = Charg, 42 Chargy, (R2T1(Go,s, T Ao)ior )

Proof. Lemma 5.8 combined with Lemma 5.9(i) yields the following commutative diagram with exact rows:

R'T(Gox, T, Au) = 0 ——> R'T(Go,z, M, tr" Ay) ——> RTt(Ga,z, T}, Ao) Dy, R

(58) trl (B) J{resp J{_

R'Tt(Go, T, Ay) @, Rs ——= RITt(Gyp, T) @3, Rs —5— R°T1(Gos, T, Ao) @z, Rs.

The proof of (i) follows immediately chasing this diagram.
We next prove (ii). In the exact sequence

(5.9) 0— erf(GQ’E, M;tr*Aa) i>R2Pf(GQ’Z,T11——I, Ay) ROws Rs
5.9 N '
— ker (R?[4(Go T, Aa) = R¥Ty(Go, MY, 1" A) ) — 0,
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the left-most module is torsion-free, and hence the induced map
St R'T¢(Gom, M, tr*Ag) — R*Tx(Go.x. T, Ao )it @, R3
is still injective. Moreover, both coker(dys) and coker(d) are Rs-torsion modules, and we have
(5.10) 0— R2Pf(GQ’Z7T£, Ap)tor Qs , R3 — coker(d) — coker(dys) — 0.
It follows from Lemma 5.14 and (5.10) that
N, RITH(Gos, M, tr*A,) ® Rs
T (ML) )
Ny RT(Go 5, Th, Ao)us ® R
52) (5(M§, tr*Aa))

Charg, (coker(d)) Charg, (
(5.11)

— Charg, @45 Chargy, (RT1(Gom, T Ao)ior )

This, combined with (5.9) and Theorem 4.3(ii) yields

D%ERQFf(GQ,Z, T& Ag)r @ Rs
5@ (5(M§ ,tr*Aa)>

5(T}.A,) = Charg, @} 5 Chargy, (R (G, T Ao)ior )

and Part (iii) (which implicitly asserts that 6@ (8(MiJ,tr*A,)) C H%HR2Ff(GQ72,Tﬂ, Ag) @ Rg) follows
since we have (5 X = g, Xir (by the definition of exterior bi-duals). O

H'(G,, T})

Let us set Z := 7
res,(R'T¢(Go,x, T, Ag))

to ease notation. The map

R'T¢(Gox, M, tr*A,) =2 Z Rz, Rs

(see Lemma 5.16(ii)) is injective, the source is torsion-free, and both the source and target are of rank 2. By
Lemma 5.14, res, induces an injective map

2 res(? 2 2
1 T » =
ng, R Ff(GQVE, M3 , tI‘*Aa) —_— mREth ®w§72 Rz = ﬂREZ ®W§,2 Rs ’

allowing us to define the submodule res](f) (5(M§, tr*Aa)) of ﬂ%nZ ®ws, Ra.

Lemma 5.17. Suppose that (nV7) holds. Then:

Na Z @Ry
Charg, & @} 5 Charg,, (R2T¢(Go.x, T, Ap) ) Charry, (Zior)
<res§><5<M§,tr*Aa>> Sa Charmy (RITi(Gos. Thy ) Cher, (2

Ny RT(Goxn, T, Ag) ® R
S (6(MI, tr*A,))

= Chal"’R3 ( > w§’2 Charng (RQFf(GQ’z‘”Tﬁ, AO)tor) .

Proof. Consider the exact sequence
(5.12) 0 — Z ZoRT1(Go.s, Tji, Ao) — R2T¢(Gox, Tik Ag) —+ H2(G, T)) = 0.

It induces an injective map Oi: Zyy — RQI}'(Gng,Tﬁ, Ag)is of Ryp-modules of rank 2, and Lemma 5.14
gives rise to a map

2 2 2 2
92 ﬂREZ = ﬂREth — ﬂRERQFf(GQ,&Tﬁv No)if = ﬂRER2Ff(GQ,27T£7 Do),

which has the following properties.
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a) The diagram

(2)
ﬂ R! Ff(GQ 2,M3,t1“ A o RQFf GQ », 1] T,Ao) Q@ Rs3

kﬂ /

RQZ ®Rs3

comimutes.
b) We have

2 (2) t * *
Charg, ﬂRHZ ® Rg [ resy? (6(M3, tr*A,)) | w; o Charg,, (coker(dy))
2
= Charg, (ﬂRHRzpf(GQ;, Th, Ao) © Ry /0P ores? (5(M], tr*Aa))>

2
= Charpg, (ﬂRHRzpf(GQ,E,Tg, No) @Rz /6 (5(M§,trma))> ,

where the second equality follows from property (a) above.
We note further, thanks to (5.12), that the sequence

(5.13) 0 — Zior — R2Ff(GQ7E,T£, Ap)tor — coker(9) — coker(d) — 0

is exact. Combining (5.13) with property (b), we conclude that

N, Z @Ry
Charg o @}, Chargy (RT(G ,E,TT7A@) Charry (Ztor)
’ <resl(, )(§(M§7tr*Aa)) 3,2 —( Q i ) u (Z

Ny R*Te(Go.5, T, A) ® R
= Charg, = P
5O (S(MI, 1" Ay))

as required. O

) w§,2 CharRQ (RZFf(GQ727 Tﬁa AO)tor) .

Corollary 5.18. In the setting of Lemma 5.17, we have

2
ZRR
5(T, A) = Charg, (Q@ :
resy” (8(Mi, tr*A,))

> @5 5 Chargy, (RQFf(GQ,E, T, A@)) Chargy, (Zior) -

The proof of the following lemma is identical to that of Lemma 5.5.

Lemma 5.19. Assume that (n'V7), (AJPE) and (Py) hold. Then:
R'T¢(Gox, T, Ag1) = R'T¢(Gos, T, Aze) .

5.2.3. In preparation for our main result, we will prove Lemma 5.20 below. Let us fix a height-one prime
q of R3. For notational simplicity, we put

S:=TRap, Wi=H(QyF'T}) ®ry S, N := the image of R'TI't(Go,x, M{, tr" A7) @x, S in Wo,
Ly := the image of R'T¢(Gq,s, T}, Az?) @, S in Wi.
Note that Z @, S = Wo/Lo and Zior @Ry S = (Wo/Lo)tor-

Lemma 5.20. We have
2 2

Chars(/\(WO/Lo)tf/ /\Nu) Charg((Wo/Lo)tors) = Charg(Wy/(Lo + Ny)).
Proof. One can choose a basis {e1, ea, €3,e4} of Wy such that Ly = Sae; + Sbes. Let us put

N, = S(a1e1 + biea + cre3 + dieq) + S(azer + baea + coez + doey) .
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Since (Wo/Lo)tors = Wo/(Se1 + Ses), we have

Charg ( (Wo/Lo) tf/ /\N ) S(crdy — cady).

Hence,

2 2
Charg ( ANWo/Lo)se/ )\ Na> - Chars (Wo/Lo)tors) = S(ab(cidy — cady)).
The proof of our lemma follows since we also have

a 0 0 O
0 b 0 O
ap by ¢ dy
ay by c2 do

Chars <WO / (Lo + Na)) = Sdet = S(ab(cids — eady)).

Lemma 5.21. Assume that (n'V7T) holds. We have,
(5.14)

HY(G,,T}) @ Rs
i i 1
0(T3,A,) = Charg, S RIT — N —
p f(GQ7Z,w372TE, Ag) @ res, R Ff(GQ72,M3,tI' AL)

N, RTs(Gos, MJ, tr* A,) Ny R'TH(Go s, T, A9)
x Charg, 2 - x Charg = T = .
(M3, tr*A,) - §(Tyy, D)
Proof. The exact sequence
2 2
0—0s ﬂR3R Ff(GQ s, M3,t1" Ag) res(?) ﬂRQZ ® Rs3 N ﬂREZ ®R3 0
S(MI tr*A,) rest) (S(MJ, 1" Ay)) N, RITe(Gox, MJ, tr*A,)

combined with Theorem 4.3(ii), Corollary 5.18, and Lemma 5.20 shows that the left side of (5.14) can be
written as

(5.15)

n2 Z Q@ Rs
Charg, 5 R - x Charry (Zior)
ngerf(GQ727M3’tr*Aa) N

M2 RIT(Go.s, MJ, tr*A,) N, R'T(Gox. T, Ag)
x Charg, 3 x Charg, = =
S(MF, tr*A,) 3(T, Do)

o HY(G,,T}) @ Rs

= ar —

R\ tes, RIT¢(Go.x. @ 5T Ag) & res, RIT(Gos, Mi . tr* A,
P QX W3 2411y 20 P Q.x, M3,

2 2 1 T
RT¢(Gox, M, tr*A, R'T¢(Go,x, Tt} Ay
« ChaI‘R3 (mR3 f( QX 3, Ul )) % CharRH (mRn ( Q I ) .

S(MI, tr* A,) 3(THh, Ap)
O

Lemma 5.22. Assume that (nV7) holds. The following canonical homomorphism is an isomorphism:
ﬂ; R!T¢(Gox, M, tr*A,) ® ﬂ2 erf(GQ,z,ws,zTﬁ, Ay)
o~ ﬂ (R Ti(Gos, M, tr*A,) & R'Te(Go.s, @3 2T A@))
Proof. This lemma follows from both Rs-modules R'T'+(Gq.s, Md, tr*A,) and R'T¢(Go x, @351, A@) are

of rank 2 under our running hypothesis. |
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5.2.4. The restriction map

R'T(Gox, Mi, tr"Ag) & R'T¢(Gq .z, @3 o T Ag) —2 H(Gy, @5 5Th))
(x,y) — resy(x) + resy(y)

where res,(z) is defined using the middle vertical arrow in (5.8), together with Lemma 5.22 induce a homo-
morphism

Log : ﬂ Rll_‘f(GQ E,M:,),tl" Ay) ® m R It (Go, g,w3 QTH,A@)
(Lemma 5.22) -~ ﬂ (R Tt(Gos, Mi, tr*A,) @ R'TH(Go s, 3, Ti A@)>
resf?4 4 1 T
— = [N, H' (Gp, w55 Th) = Rs,
where the final isomorphism amounts to choosing a basis of the cyclic Rg-module ﬂ%HH HaG,, Tﬂ)
Proposition 5.23. 5(TJ7A )= Log(4) (5(M§,tr*Aa) ® 5(T£, Ap)).

Proof. If (nV$) fails while both §(M.J, tr*A,) and (5( ,Ap) are non-zero, then Lemma 5.8 implies that the

homomorphism resf?‘l vanishes. Consequently, Log{(g,)0 (6(M§, tr*Ay) ®5( s @)) = 0. Thus, we may assume
without loss of generality that (nV7.) holds.

Both R3-modules rﬁzgRlI\c(Cng7 M, tr*A,) and ﬂ%gRlFf(GQ,g,wgszﬁ, Ap) are torsion-free of rank
one under (nV7). Hence,

M2, RIT¢(Go.s, M, tr*A,) Nr, R'T(Gox, T Ag)
CharRS 3 ; X CharRH — T —
S(M, " A,) 3T, Ag)
N, RITH(Go e, MY, tr*A,) ® M, RIT(Go,x, @5 . T Ap)
S(MJ, tr"Aq) ® 6(T}, Ag) '

(5.16)

= Charg, (

Moreover, observe that we have

@ HY(G,, T}) @ Rs
(5.17) Charg, (coker(Loggo)) Charg, =

res, R'T(Go,x, w§72Tﬁ7 Ag) @ res, RIT¢(Go.x, MJ, tr*A,)

The proof of our proposition follows on combining (5.14), (5.16) with (5.17) and Lemma 5.14. O

Remark 5.24. In this remark, we briefly explain that an analogue (5.18) of Proposition 5.23 holds in the
situation of §5.1 as well, and Theorem 5.1 can be deduced from that.
Suppose that 5(T§, Ag) #0= 5(T£, Az2). By Lemma 5.3 and Lemma 5.4, we have

HY(G,, F1/.73) @ Rs
G, @3, T Azt)) @ res, (R (G s, M{, tr*Ag))

RIT(Goum, M, tr"A0) | RIT((Gx, Tf, Az)
S(MI, tr* Ag) e S(T, Ag) '

5(T§, Ag) = Charg,
(Ts. Aa) ® (resp(R Te(

X CharR3 (

The same argument as in the proof of Proposition 5.23 shows that

(5.18) 3(T], Ag) = Log'2: 7o (8(M, tr* Ag) @ O(TH, Az1)).
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Here, Log'(;)1 /3 is given as the compositum of the morphisms
Rl].—‘f(GQ’E, M;, tT*Ad) ® erf(GQ,g, w;»zTﬂ, Agjl)

~ 2 * *
=N, (erf(GQ,E,Mg,u Ag) ® erf(GQ,Z,wg,ZTg,A%))
. I

4(2) 2
resp 1 gl g3\ ~
—>ﬂR3H (Gp, FL)T3) =R

As before, let us denote by Log,,. the composite map

resy

R'T¢(Go,x, M, tr*Ag) & R'T((Goz, @5, 1, Azr) —3 HY(Gy, Z') @ Rs — H' (G, F'/.F?) @ R3 = R3
and Log, as the composite
ker(Logy ) —% H'(Gp, F2) @ Ry — H (G, 72/ F%) @ R3 = Rs.
Then, we have by definition
2

Logg)l/g3 = Log,/. N Log,.
Since Logd/e(é(Tﬁ, Ag1)) =0 by Lemma 5.5, we obtain
O(T, Ag) = Log'2: 7o (8(M, tr* Ag) © O(THh, Az1))
= (Logg/. A Log.)(8(MJ, tr"Ag) @ 6(TH, Az1))
= Loga/e (5(M{, tr* Ag) - Log,(0(Th, Ag))
concluding this alternative proof of Theorem 5.1. |

5.2.5. Our proof of Theorem 5.13 will mimic the second proof of Theorem 5.1 we have recorded in Re-
mark 5.24. To execute this plan, we will show (cf. Lemma 5.27 below) that the saturations Hﬁ(Gp,Tﬂ)

and H}M(Gp,Tﬁ) of the isomorphic images of erf(GQ7E,W§72T£7 Ag) and R'Ty(Go.x, M, tr*A,) inside
Hl(Gp,w;;gTﬂ)7 respectively, have the following property: The quotient Hl(Gp7w§72T£)/H?1(Gp,T£) is a
free R3-module of rank two for each ? € {II, M}.

We will need the following general facts (recorded as Lemma 5.25 and Lemma 5.26 below) in our proof of
this property.

Lemma 5.25. A reflexive module of rank one over a reqular local ring S is free.

Proof. Let I be a reflexive ideal of S, and let p be a height-one prime of S. Since regular local rings are
unique factorisation domains (by a well-known theorem of Auslander-Buchsbaum), the height-one prime p
is principal. Let z, be a generator of p, and let n, be the non-negative integer such that 1.5, = p"»S,. We
put x := [, p=1 xg" € S. Then IS, = xS, for any height-one prime q of S. Since I is reflexive, this implies
I'=Vyypey @Sp = xS (cf. [Sak23], Lemma C.11). O
Lemma 5.26. Let S be a regular local ring. For any finitely generated torsion-free S-module M, we have
Ext(M, R) = 0.
Proof. This is well-known. See, for example, [Nek06, §9.1.3(v) and (vi)]. |

Lemma 5.27. Assume that Hypotheses 5.2.1 hold. Then both Rs-modules
HY Gy w5, T/ Hi(Gp, Ty)  and  H' (G, @3 ,T1h)/Hiy (G, Thy)
are free of rank 2.

Remark 5.28. In the situation of §5.1, the saturation of res, R'I't(Gq %, T&, Agi)in HY(Gp, F').73) equals

HY(G,, 7%/ %3). Therefore, the analogous quotient in this case is isomorphic to H'(G,, #'/.%?), which is

free of rank one. u
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Proof of Lemma 5.27. Let us show that Hl(Gp,w;QTrTI)/Hﬁ(Gp,Tﬁ) is free. For i € {0,1,2,3}, we let
H} (A z:) denote the saturation of the isomorphic imag; of erf(G;E, T, Az:) inside H'(G,, T}). Then
it suffices to show that
Hl(Gp,Tﬂ)/Hﬁ(Ago) is free (over Ri).
Note that Hf(Ag1) = H(Az2) under our running hypotheses (cf. Lemma 5.19), and it is of rank 1.
Since TrT[ is self-dual, the cup-product pairing induces a perfect pairing on H 1(Gp,Tﬂ). This pairing
induces a perfect pairing

(5.19) HYG,, #°)7?) x HY(G,, #?) — Ru.

To lighten our notation, let us denote by L the image of le‘f(Gng,Tﬂ, Ay) inside HY(Gp, F°/F?), and
write Lt for its saturation. We first prove that

(5.20) Lt = Lt = H (A ge).

Note that the first equality in (5.20) is clear since the pairing (5.19) takes values in the integral domain Ry;.
Moreover, since both L and Hy;(A z2) are of rank 1 and H'(G,, #?)/Hj(A #2) is torsion-free, we have

Lt =Hi(Ag2) <= LT D Hi(Ag2) <= L L Hjj(Age).
As a result, once again relying on the fact that the pairing (5.19) takes values in the integral domain Ry,
the sought after equality (5.20) follows once we check that
(5.21) L®Q L1 Hj(Az)®Q,
where Q is the field of fractions of Ry.
As the complex RT'(Gy, Tﬁ) ® Q is acyclic for each prime ¢ # p, it follows from Nekovai’s duality [Nek06,

Proposition 6.7.7] that the cup-product induces an isomorphism
HomQ(RFf(GQ’E, Tﬂ, A@) X Q, Q)[_g] = RFf(GQ,E, Tﬁ, AO) & Q .
We, therefore, have an exact triangle
Homo (RIt(Go.s, T, Ag) ® Q, Q)[-3] — RIt(Go,s, T, Az) ® Q — RI(Gy, F2) © Q T,
which yields the exact sequence

Hjj(Az2) ® Q=RI}(Gox, T}, F2) ® Q — H' (G, 7%) @ Q — Homg(RI'} (G5, T}, Ag) ® Q, Q).

This precisely means (5.21) holds, and the proof of our claim (5.20) is complete.
Since H'(G,, F°/.Z?)/L**" is torsion-free, Lemma 5.26 shows that

Homp, (H'(Gp, #°/7?),R3) — Homp,, (L***, Ru)

is surjective. We therefore obtain an Rp-isomorphism

HY(Gp, 7*)/Hy(Az2) — Homp,, (L, Ry).
This fact shows that H' (G, 72)/Hjj(Az2) is reflexive, and hence it is free by Lemma 5.25; which, in turn,
implies that the inclusion morphism Hﬁ(A z2) —> H 1(GP,Tﬁ) admits a section. Therefore, the inclusion
map Hyj(Az>) — Hf(Azo) also admits a section, and hence, we have an Ry-isomorphism
(5.22) Hyy(Agzo) = Hiy(Az2) ® Hy(Ago)/Hiy(Az2).
Since both Hjj(Azo) and Hjj(Az>) are reflexive, the quotient H}j(Ago)/Hfj(Az2) is also reflexive. We
infer from Lemma 5.25 that Hf(Agzo)/Hjj(Az2) is free. In particular, Hfj(A o) is free. Using again

Nekovéi’s duality, we obtain Hfj(Azo)™ = Hjj(Azo), and hence an isomorphism
HY(Gp, T /HEy (A 7o) — Homp,, (Hfy (A 7o), Ra).

This concludes our proof that H'(G,, T;[)/Hﬁ(Ago) is free, as required.

The same argument shows that H' (G, wg’QTﬂ) JH} (G, Tﬁ) is free, and our proof is complete. O
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5.2.6. By Lemma 5.27, there is a surjection of Rs-modules Hl(Gp,wgk’zTﬁ) N R2 such that ker(f) =
HY (G, T}). We put
- ¢, :==pr;olpores, (i=1,2) and Logfﬂ) =11 A ta.
Let 3, ¢4 € Homp, (H' (G, @} ,T]), Rs) be such that
Y3 D Py B Ly - Hl(Gmw;’QTﬁ) — Rj
is an isomorphism.
Theorem 5.29. Assume that Hypotheses 5.2.1 hold. Then,
3(T§, Aa) = Logi T (8(MJ, tr* Ag)) x (105 0 resy A by o ves,) (3(TH, Ap)) .
Proof. The asserted factorisation follows from the following chain of equalities:
3(T, Ag) = Log 2L (0(M{, tr* A) @ (T}, Ag))
= (1p3 ores, A4 ores, A Log&zﬂ))((;(Mg, tr'Ag) ® 5(Tﬁ, Ap))
= Log i (8(M, t1* A,)) x (3 0 res, Ay o ves, ) (3(TH, Ag)).
Here, the first equality is Proposition 5.23, and the final equality holds thanks to definitions. O
5.2.7. Basis ole(Gp,Tﬁ). For each i € {0,1,2,3}, let us choose basis {fo, -, fi} C HY(Gp, F37%) so that

(fir fa—3) = (=1)"6i5,
where d;; is the Kronecker delta function.
5.2.8. Basis of Hﬁ(Gp,Tﬂ). By Lemma 5.27, the Rs-module Hﬁ(GP,Tﬂ) is free of rank 2. Moreover, the
isomorphism (5.22) shows that Hﬁ(Gp,Tﬂ)/(Hﬁ(Ag2) ® R3) is free of rank 1. One can therefore take a
basis of Hf(G), Tﬁ) of the form
{p2=aifotbifiteafotdifs, pr:=cafo+dafi}.

As we have seen in the proof of Lemma 5.27, the quotient H' (G, 92)/Hﬁ(Agzz) is free, that is, R2/(ca, d2)R3
is free. As a result, since R3 is a local ring,

® ¢ or ds is a unit.
Moreover, since Hﬁ(Gp,TIT[) = Hﬁ(Gp,Tlir[)l, we have
0= (g1, p2) = cadr — dacr.
Putting all this together, we conclude that there is an element r € R3 such that

() =r(2)-

Lemma 5.30. Under Hypotheses 5.2.1, the Rs-module Hﬁ(Gp,Tﬁ) has a basis of the form

We thus obtain the following result.

{p2,1 := anfo + bufi + rucnfe + rudufs, w1, = cufo+dufi},

where at least one of cn and dn is a unit.
5.2.9. Basis of Hy; (G, Tﬂ) Applying a similar argument as in the previous section, we obtain the following:
Lemma 5.31. Under Hypotheses 5.2.1, the Rs-module H}W(Gp,Tﬂ) has a basis of the form

{pa.m == amfo+bufr +ruemfo+rudufs, o1,m =cmfo+dufrl,

where at least one of cpr and dyy is a unit.
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5.2.10. An explicit version of Theorem 5.29. Since resp(é(Tﬂ,A@)) C /\3211 Hﬁ(Gp,Tﬂ), by Lemma 5.30,
there is an element x; € R3 such that B

res, (3(T}, Ag)) = Rsznern A g
Similarly, by Lemma 5.31, there is an element z,; € R3 such that
resp(é(Mg, t1"Ag)) = Raxar,m N 02,m-
Proposition 5.32. In the setting of Theorem 5.29, we have
5(T§, A,) = Raznayrnra (eardn — daren)?,
Log!}) 8(My, t1" Ag) = Razarrnras (eardi — daren)?,

(13 oresy, Aty o esy) 5(T£, Ay) = Razn -

Proof. Since
Q1. A o1 Apan A2 = —rura(eard — dyen)® fo A fi A fa A fs,
the first assertion in our proposition follows from Proposition 5.23:
5(T§, A,) = Log(;z, (6(M§L7tr*Aa) ® 6(T£, Ag)) = Raznayrora (cardn — dyren)?.
Next, let us prove that
Logfﬂ) 5(M§7tr*Aa) = Raznra(eardn — dasen)?.

Since Hﬁ(Gp,Tﬂ)l = Hﬁ(Gp,Tﬁ), we have

LOg%)( =)= (= p1m) A (= p21).

As resp(é(M;:,tr*Aa)) = Razrpr1,m N p2.0, it follows that

Loe™® § Mf,t “A,) =R « det <<801,M7901,H> <902,M,<P1,n>) .
8/ (M, tr ) sEM ¢ (10, 02m) (@2, p2,11)

Since (p1,m,¢1,1) = 0, we have

det <<<P1,M7<P1,H> <<P2,M,¢1,H>

<<,01 M 02 H> <Lp2 M 02 l‘[>> = *<$02,M7<P1,H> X <S01,M’<P2,Q>

= —TM(CMdE — dMCE) X TE(CMdE — dMCE).

This concludes the proof of the second equality.
Let us next show that (3 ores, Ay ores,) 6(T£, Ay) = Razn. Note that there exist s3,s4 € H'(G), Tﬁ)

such that ¢; = (=, s;). Then {s1 := @111, S2 := Y211, S3, 54} is a basis of Hl(GmTﬂ), and
det((s;, s;)) € R3
since the local Tate-duality pairing on Hl(Gp,Tﬂ) is perfect. Since (s;,s;) = 0 for ¢,j € {1,2}, it follows

that
(s1,83) (s2,83) %
det €ERs.
¢ <<sl,54> (s2,54) 3

This concludes the proof that
. T _ (s1,83) (s2,83)) _
(¢3 ores, Ay o resp) 5(TH’ A@) = Rpzn X det <<81, S4> <82, 84> = Rnzm,

as required. 0
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5.2.11. Proof of Theorem 5.13. Note that we have
S(MF,Ay) = Rszyrardarerne, (T, Azr) = Ruznrndner n
by definition. As a result,
Log,. 5(M3T,Ab) x Log, 5(Tﬁ, Agr) = RgI’MLL'HT‘MT‘HdQEd?V[.
The proof of Theorem 5.13 follows from this, combined with Proposition 5.32.

6. ENDOSCOPIC CASES

In this section, we discuss the endoscopic cases where the GSp,-representation II (and families of such)
arises from a smaller group. We remark that the formulation of our factorisation conjectures dwells on
the interpolation of Eichler—Shimura isomorphisms (cf. [LZ21a, DRW25b]). The critical points (in the
sense of Bellaiche-Chenevier, which contains the set of “endoscopic points” that we describe below) over the
GSp,-eigenvariety are excluded from the locus of interpolation. As a result, the factorisation results in this
particular case assume a slightly different shape, in that the graded piece of the local Galois representation
that one trivialises is different from the generic scenario. Our Corollaries 6.12 and 6.14 below reflect this
fact; see also the discussion in Remark 6.17.

Definition 6.1. Let II be a cuspidal automorphic representation of GSp, of weight (k1, k2), with k1 > ko > 2,
and trivial central character.
(a) We say that II is of Yoshida type if there is a pair (71, m2) of cuspidal automorphic representations of
GLs, corresponding to two elliptic modular newforms of weights t; = k1 + ko —2 and to = k1 — ko + 2,
such that for all but finitely many places v we have

L(s,IL,) = L(s,m1,4)L(s, m20).

(b) We say that IT is of Saito-Kurokawa type if k; = ko and there exists a cuspidal automorphic
representation m of GLo attached to some holomorphic newform of weight 2k; — 2 such that for all
but finitely many places v we have

L(s,I,) = L(s, )¢ (S - 5) ¢ (S + )

These definitions may be extended to the case where the central character is non-trivial, but considering
the appropriate twists but we shall limit our discussion to the scenario where it is trivial.

6.1. Yoshida lifts. Let us put'’ TJr = (TT ®Re, Ru) @ (TT ®Re, Ru), where f; is a Hida family, R, is

the irreducible component of the universal Hecke algebra determined by f;, and Ry := Ry, ®Rf

Recall our running assumption that the global root number of the members of II (at the central critical
point) equals —1. That means one of the families f; has global root number —1, and the other +1; so let us
assume that

Ty 1 — _ I
(6.1) e(Ty ) =1=—e(Tf)).
6.1.1. The Galois representation T. ?T (where ? = 3,4) admits the following decomposition:
(6.2) T} ~ (T} 8T,87; ) or, Ru & (T} BT,ET;) @x,, R -
i, i,

When ?7 = 3, each summand above further decomposes as

(6.3) Ty ~ ((TT ® ad’Ty) & T} ) ®re, Ru @ ((TT ®ad"T,) & T} ) ®re, R -

i, 74

Moreover, in view of our discussion in §2.5.1, we have:

19we implicitly consider TI% as the Galois representation associated to a family II of Yoshida lifts. Such families of Siegel
modular forms were recently constructed by M-L. Hsieh and Z. Liu. The ad hoc definition of the Galois representation above
suffices for our purposes in this subsection.
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- Region (a) corresponds to the g°-dominant region for both triple products TL_, (7=1,2).

- Region (b) corresponds to the ¢®-dominant region for Tiﬂ and balanced region for Ti,l-
- Region (c) corresponds to the balanced region for both.

)
Based on this, (6.2), and (6.4), we set Léa) (Tj) = LI(FC)(TJJ) X LZ(,QC)(T?TJ).
6.1.2. We also have the decomposition

(6.4) M ~ (TT ® ad’T, )@Rf Ru @ (TT ® ad’T, ) ®r,, Ru-

My, M,
6.1.3. Recall that we work under the assumption that the global root number of the specialisations of T4T
in region (b) is —1, and equivalently, it is +1 for those in region (c):

1= —eO(T]) = eO(Tf) = (T ) - (T ,) = e (My ) e(Th,) - " (Mag) e(Tr,)

That means Tll and T, 1’2 have the same sign in the balanced region. We assume that this sign is —1, so
that we have
£ _ _bal _ _1—_ _bal _ £
—e (M) =™ (Msn) = =1 = =" (Ms2) = e2(Ms,2).

Remark 6.2. Unlike in the non-endoscopic cases, classical specialisations of M; in the region (a) are critical
in the sense of Deligne: As we have noted above, these correspond to g®-dominant conditions on both of the
GLy x GL3 factors. Note that “g®-dominant” is synonymous with “balanced” for these factors.

Conjecture 6.3. Under the current assumptions, the following factorisation formula holds:
LE(T)? = LE)(T] )7 x LiE)(T4 )
= (Logu, , (B )2 % Ly(£r)) x (LB (M) x Log,,, (A])?)
= (LoBu, , (B )2 % LM ) ) x (Ly(£)) x Log,,,, (A])?) .

Log.yy, (8707 Log,py (Afp)?

(6.5)

up to multiplication by an element of RE[%]X that specialises to an explicit algebraic number at all classical
specialisations of (£,,£f,). Here:
o The trivialisation Logst ) is defined at the start of §6.2.5 below.

. AMS“ € Hl(Q,Mg,l) is the conjectural family of twisted diagonal cycles (cf. [HY23] and the forth-

coming work of Chida—Hsieh—Prasanna), whereas AIQ € HI(Q7T§2) is the family of diagonal cycles
of Darmon-Rotger and Bertolini-Seveso—Venerucci. h

o L,(£f,) is the restricion of the Mazur-Kitagawa p-adic L-function to the central critical line, whereas
Lgal(M;Q) is the same for the conjectural p-adic L-function associated to the family M;Q (cf. [BC25],
Conjecture 2.4).

o A = LPI(M],) - Ay and Al = Ly(f,) - AL

Mg 3,1 SN L5
n (6.5), assuming the truth of the Gross-Kudla conjecture® and the “non-anomality condition” (NA),
the factorisation
L (T 5)* = Lp™ (M) x Log(A] )*  (mod Ry

is proved in [BS25] and its sequel [BCPAVP25]. The remaining part of the conjectured equality (6.5) is the
assertion that

(6.6) LEO(T]1)* = Log(A ) % Ly(y).

20n its more general form as [BCPdVP25, Conjecture 5.1].
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and it supplements the results of [BS25, BCPdVP25]; its proof is work in progress by the first and third
named authors with A. Cauchi. We believe that similar techniques to those in [BC25] would allow one to
give an unconditional proof of Conjecture 6.3 when the family ¢ has CM.

We refer the reader to Theorem 6.16 for its algebraic counterpart in terms of modules of leading terms.

6.2. The algebraic counterpart of Conjecture 6.3. As we have remarked at the start of §6, Theo-
rem 5.13 needs to be modified in the endoscopic cases. In this subsection, we explain why indeed this is
necessary (cf. Corollary 6.12, Corollary 6.14 and Remark 6.17) and prove (in Corollary 6.18) the appropriate
variant of Theorem 5.13 in the setting of §6.1 (which is the algebraic counterpart of Conjecture 6.3).

6.2.1. Filtration on T;[ We consider the filtration .#*® on TllL[ = (TJf ®Re, R1) & (TfT2 ®R,, Ru) and determine

how it propagates to each summand. Since (F2)+ = Z2, we have
ygTﬂ = F+Tg1 ®R£1 Rﬂ & F+T£T2 ®R£Q ,R’E

Here FJFTT denotes the rank one G,-submodule of TfJr , whose existence is guaranteed by the p-ordinarity.
Moreover, the fact that 371 has rank one 1mphes that it must be equal to F JFTJf for some i € {1,2}.

Furthermore, using the relation (#3)+ = !, it follows that
i i P
le;—& _ F+T£1 ®R§1 Ru & T£2 ®72£2 Rn if i=1,
T @, Rn & FT{ ®r, R if =2

To summarize, we have two possible candidates for the filtration .#* on TrT[, each of which is determined by
the choice of F3T}::

Definition 6.4. For each integer ¢ € {1,2}, we call the filtration .#® on TIII satisfying jslel _ F+Tfj_ an
fi-dominant filtration.

6.2.2. In what follows, for any R¢ -module (or a complex of R¢ -modules) M, let us write Mz, (resp.,
Mp,) in place of M QRre, R (resp. of M ®Rf R3) to ease our notation. The following three propositions
follow immediately from the definition of .Z

Proposition 6.5. Suppose that 7* = F.

RI¢(Gox, TH’ Ago) = RI¢(Gox, Tgl , A@)RE @& RIt(Gos, ng , Aﬂ)RE’
RI¢(Gos, Ti,Az1) = RI¢(Gox, Tgl,AF+ Jre @ RIt(Gos, TEQ,A@)RQ,
RT¢(Gos, T, Az2) = RIt(Gos, TglaAFJr)RH © RIt(Ggs, T£27AF+)RE7
RI((Gox, Th,Azs) = RIt(Gox,T{ ,Api)ry @& RIt(Gox, T}, Ao)ry,
RI¢(Gox, TH7 Agis) = RIt(Gox, Tgl , AO)RE ® RIt(Gosy, Tf]; , AO)’RE .

In the case of Z3, the roles of £, and £, are reversed.

By definition, we have a canonical homomorphism
6.7 RT¢(Gos, Tj , A RT¢(Gos, Tj , A ® R'Ti(Gox, Ti, A
( . ) f( Q,Ea £1’ (D)RE ® f( Q,Ea £23 (D)RE — ﬂRH f( Q,E? E? (g;O).

It therefore becomes possible to compare (S(Tﬂ7 Ay) with 5(T£1,A@)RE ® 6(T£2,A@)RE
Corollary 6.6. We have

(6.8) 3(Tih, Ag) = 6(TF , Ag)ry @ O(TY , Ag)ry
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Proof. 1If 6(T£, Ap) = 0, then at least one of (5(T£2,A@)RE or (5(T£;7A@)RE must vanish. Thus, we may
assume that all three are nonzero. Then Theorem 4.3(ii) and Proposition 6.5 shows that

2
Chargy (QRH R'T¢(Gox, Ty, Ago) / (T, A@))
= ChaI‘RE (RQFf(GQ)E, Tﬁ7 Ago))

= CharRE (RQFf(GQ’E, Tgl y A@))R X ChaI‘RE (RQFf(Gng, ng’ A@))

o n
= Charg, (erf(GQ,E, T} Ag)ry ® R'T(Gos, T}, A(z))RE/é(:rgl,A@)RE ®8(17 A@)RE) .

Since both (&, R'Tt(Go,x, T, Azo) and RITt(Go,s, T} , Ag)ry ® R'TH(Gox, Ty , Ag)wy, are free of rank

1 and the homomorphism (6.7) is an isomorphism, we obtain the desired equality 5(T£, Ag) = (5(Tg1 AP Ry ®

5(ng, Ap)ry- O

Recall that we have two Greenberg local conditions A, and Ap, on T?]L,z‘v as defined in [BS25, Example

4.1]. These are referred to as the g-dominant Greenberg local condition and the balanced Greenberg local

condition, respectively. They are defined via the following choices of submodules of T;i:
e The g-dominant condition A, is defined by the submodule

FiT], = (T} @r, Ru)®F T} @, Ti. =T},
e The balanced condition Ay, is deﬁned by the sum of submodules
FLTL, = (FYT] @r, Rn) @ FIT @ Tl + (Tf @r,, Ru) ®F'T) @ F*T).
+(F*T] @, Rn)&T) @ FYT). < 1),

Moreover, using the homomorphism tr*: T3 ; — M3 ;, we obtain two induced Greenberg local conditions
on M3 ;, denoted by tr*A, and tr*Ap,.

Proposition 6.7. Suppose that F* = F;.

RI¢(Gox, MJ,tr*A,) = RIp(Gox,M] ,tr*A,) @& RIH(Gox, M, tr*A,),
RFf(GQvg,Mg,tI‘*Ab) = RFf(GQ@,M;l,tI‘*AbaI) D RFf(GQ,E,M;Q,tI‘*AZ),
RFf(GQ,E,Mg,tT*AC) = RFf(GQﬁE,Mg’l,tI‘*Abal) () RFf(GQﬁE,M;Z,tI‘*Abal),
RFf’(GQ’g,Mg,tI‘*Ag‘) = RFf(GQﬁg,Mg’l,tr*Abal) D RFf(GQ’E,Mg’Q,tF*Aé) .
RI¢(Gox, M, tr*A}Y) = RIy(Gox, Mi | tr*AL) & RIy(Gos, Mi, tr"AL).

In the case of F3, the roles of M§,1 and M;z are reversed.

Arguing in the same way as in the proof of Corollary 6.6, we obtain the following;:
Corollary 6.8. We have
(6.9) S(M " Ag) = 6(MJ |t Ay) ® 5(M3 5, tr*A,).

Proposition 6.9. Let {fo, f1, f2, f3} be the basis of Hl(Gp,Tl%) given as in §5.2.7.

i) If F* = Z?, then we have Rufo = Hl(Gp,F+Tgl) andiREfl = Hl(Gp,F"’ng). Moreover, fa €
Hl(Gp,ng) and f3 € Hl(Gp,Tgl).

i) If #* = %3, then we have Rufy = Hl(Gp,FJrng) and Rufi = Hl(Gp,F+T£1). Moreover, fo €
HY (G, T{ ) and fs € HY(Gy, T}).
Corollary 6.10. In the setting of Proposition 6.9, if #°* = %, then cn = 0 and dg is a unit. If #°* = F3,

then cn is unit and dpg = 0.
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Proof. The saturation of the image of R'T¢(Gq 5, Tﬂ, A z2) equals H(G), TEQ)RE. This corollary therefore
follows from Proposition 6.9. ]

6.2.3. We recall that we are working under the assumption that E(Tgl) =1= —€(T£FZ). Let us consider the
following analogues of the hypotheses listed in §5.2.1 (see also Remark 6.15 below):

AJ%‘) respé(Tgi,Am) # 0.
Py ) 8(Tf ,Azi) =0.
Proposition 6.11. Suppose that 6(Tgl,AF+) # 0. Assume also that (AJ%) and (PEQ) hold true (i =1,2).
i) If #* = .7, then we have
R'T¢(Gox, T, Ago) = R'T¢(Goyx, Tgl ,Ag)ry @ R'T(Go x, ng AR+ )Ry
R'T((Gos, Ti, A1) = R'TH(Gow, T, Az2) = R'Ti(Gom, T}, Ap+ )ry,
R'T¢(Gox, T}, Azs) = R'T¢(Gox, T}, Azs) = 0.
ii) If Z° = F5, then we have
R'T¢(Go.s, T, Azo) = R'T(Gox, Tii, Az1) = RTe(Gos, T, Ag)ry © RTe(Goys, T, Ap+)ry
R'T¢(Gox, T, Az2) = R'T(Gox, T, Ags) = erf(GQ,z,ng,Am)Rﬂ,
R'T¢(Gox, Ty, Ags) = 0.
Proof. This proposition follows from Proposition 6.5 and [BS25, Proposition 6.2]. O

Corollary 6.12. (AJPE) is false in the situation of Proposition 6.11(i3).
Proof. This follows from Lemma 5.9 and Proposition 6.11(ii). O
6.2.4. Since s(Tle) =1= fs(TfTQ) by assumption, we have e”(Msz 1) = —1 = —P?!(Mj35). Let us consider
the following hypotheses:

AT ves, 6(M] ,, tr*Ag) # 0.
P;V[&l) 5(M§)1,tr*Aba1) =0.
In the same manner as Proposition 6.11, one may also prove the following proposition:

Proposition 6.13. Suppose 5(M§’27tr*Aba1) # 0. Assume also that (AJ]]DW?’“i) and (P, ) hold (i =1,2).
i) If F* = .77, then we have

R'Ti(Gox, Mi, tr*A,) = R'T(Gqz, M, tr*Ay) = R'T¢(Go 5, M 1, tr* Apa) @ R'T(Goz, Mi 5, tr*A,),
R'T¢(Gox, Mi, tr*A.) = R'T¢(Gos, MY, tr* Af) = R'T(Gqz, M 1, tr* Apar),
R'T(Gox, M, tr* AL) = 0.
ii) If #° = F5, then we have
R'T(Gos, M3, tr*A,) = R'T¢(Go,z, M |, tr* Apa) @ R'T¢(Goz, Mi 5, tr*A,),
R'Tt(Gos, Mj, tr"A) = R'T¢(Gos, MY, tr*A,) = R'T(Goz, M3 1, t1* Apa),
R'T¢(Gox, M, tr*Aj) = R'T¢(Gox, Mi, tr* AL) = 0.

Corollary 6.14. Suppose that the hypotheses of Proposition 6.13 are valid. If #* = Z (resp. if F°* = F3),
then cpr is unit and dpyr = 0 (resp. cpr = 0 and dpy is a unit). In particular, (AJ;\J) is false when F* = F.

Remark 6.15. Under our assumptions on the global root numbers, the hypotheses of Propositions 6.11
and 6.13 are consequences of a natural extension of Greenberg’s conjectures. We also note that (n'V7) is
equivalent to four assumptions (AJ%) and (AJ ijug) fori=1,2.
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6.2.5. Recall that we have a canonical trivialisation (see [BS25, (6.8)])
Log,, : H'(Gp, F*T] )ry — Rur.
Moreover, on setting F;CLIM;[z = tr*(F];ralT?]Lﬁi)7 we also obtain a surjection

Log,,
Log,,,,  + H'(Gp Ry MY ;) — H' (G, FIT{ ©9r! ad’(Ty))ry —— Ra.

Theorem 6.16. Assume (PEQ) and (Py, ). Then,

8(T§, Ag) = Log,,,,  (§(M 1, tr"Ag)) x 5(M] o, tr" Apar) X 8(T{ , Aps)r, x Log,, S(T{ , Ag)r,

3
We remark that under our running assumptions (Pi_2 ) and (P}, ), if one of (AJ%) or (AJ 2']3*”’) fails for
some i € {1,2} (which is equivalent to say that (nV7) fails), then the asserted equality reduces to 0 = 0.
Proof of Theorem 6.16. Proposition 5.23 together with Corollaries 6.6 and 6.8 imply that
(T4, Ag) = Logoh (§(Mi 1, 1" Ag) @ 6(M] 5, tr*A,) © 5(T£rl AR, ® 5(ng, Ag)r,)

where Logt(;)0 is as in §5.2.4. Since we have the decomposition Tg = Tg,l @ T§,27 we obtain

3(TY, Aa) = Logi? (8(M ,, tr"Ag) @ 8(T] , Ag)m,) x Logl” (5(M 5, 1 Ag) @ S(TY, Ag)r,).
Here,
Logt”: R'T(Go,s, Mi ;. A,) ® R'T4(G, 5. T Ap)ry
_>m R Ff GQ E’M3 17A )@erf(GQ,EaTgiaAm)Rg)

— ﬂ LG, TJr JRs = Rs.
We next define the morphism
Logp- : Hl(Gp,Tg YRy — Hl(G,,,F*Tgl)RS R
Since 6 (M. 3 1>t Apar) = 0 by the assumption (P ), it follows from Theorem 4.6 that

S(MJ 1, tr*Ay) € R'T¢(Gos, M3 1, tr* Apa),

and hence
Log - (res, (6(Mj |, tr*A,))) = 0.

The definition of L0g§2), together with Theorem 4.6, shows that
Logi? (§(M] 1,61 Ag) ® 8(T] , Ag)ry) = Log,,, | (5(M] 1, 1" Ag)) x Logp- (resy(5(TF , Ag)w, )
= Logy,, , (6(M] 1, tr*A,)) x 5(Tg1 Api )R,
On the other hand, since 5(T£2,A r+) = 0 by the assumption (Pi_z)’ it follows from Theorem 4.6 that
Log - oresp((;(ng,A@)Rg) = 0. Therefore, by the same argument, we have
Log” (8(M 5, 11 Ag) ® O(T{, Ag)r,) = 6(M 5, t1" Apar) x Log,,, 5(T , Ag)r,
(see also [BS25], Theorem 6.7). O

Remark 6.17. Suppose that # = .%?. Then by Proposition 6.11(i), we have Logwf2 = Log,. On the other
hand, Proposition 6.13(i) implies that

Logyy, , = Logzs # Log, .

Here Log 2 is the homomorphism induced by the isomorphism H'(G,,.# 3T11L[) — Rp. In other words, in
the endoscopic cases, the trivialisations of the modules of the relevant leading terms dwell on Eichler—Shimura
isomorphisms in different degrees of cohomology.
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In the supplementary case when .# = %3, the situation is reversed; namely, we have Log,,, = Log,,

and Logwm = Log #s # Log,. [ ]
Let us put
Ag\?jalg = 5(M§71, tr*A,) x 6(M§72,tr*Abal) , Aﬁalg = (S(TEI,AFJr)RE X 5(T£2, Ag)Ry -

Moreover, we define the homomorphisms LogwM3 and Log,,  according to the choice of the filtration .7 as
follows: B

Loggzs if F =77, Log, it # =277,
LogwM = g ae Logwn = g a e
ke Log, it 7% =23, = Loggzs if # =.%3.
Then, as a corollary of Theorem 6.16 (see also Remark 6.17), we obtain the following result.

Corollary 6.18. In the situation of Theorem 6.16, we have

c),al s
6(T§, Aa) = Log,,,, (A[F™) x Log,,, (AF™).

Remark 6.19. When E(TfT )=—-1= fs(TfTQ), the contents of this subsection remain valid if we exchange the

roles of f; and f,. -

6.3. Yoshida lifts (bis). We continue to work in the setting of §6.1, but now to supplement §6.1 to revisit
the factorisation problem over the region (d) in this endoscopic scenario and explain that it reduces to
[BS25, BCPdVP25]. We have the decompositions (6.2), (6.3) and (6.4) as before. Moreover,

- region (d) corresponds to the g°-dominant region for T4T72 and f;-dominant region for Til ;
- region (e) corresponds to the balanced region for T4T72 and f,-dominant region for Tr;,l .
Based on this observation, (6.2), and (6.4), we set

f o¢ f a
LO(T]) = Ly (T],) < LiEO(T]y) . LD (M) i= L) (M ) < L0, 7= 3,4
6.3.1. As we work under the assumption that the global root number of the specialisations of Tl in region
(e) equals —1, we have
—1=e(Tf) =f(T])) - " NT],) =B (M31)e(Ty,) - € (Ms2)e(Th,) .-
That means
—ehs (TJJ) = Ebal(TIJ) = Ebal(Tiz) ==+l
and we assume that it is —1. In view of (6.1), we then have

€£1 (Mg’l) =1= Ebal(Mg,’Q).

Remark 6.20. Unlike in the non-endoscopic cases, classical specialisations of Mg in the region (d) are critical
in the sense of Deligne: As the discussion above shows, if II is a Yoshida lift of (f1, f2) as above, with
the propery that II x o x o¢ has weights in the region (d), then the GLs x GLs-summand f; X ad’o is
f1-dominant, whereas f» x ad” o is balanced.

Theorem 6.21. In the setting of the present subsection, let us assume that [BCPAVP25, Conjecture 5.1]
(extension of Gross—Kudla conjecture) as well as (NA) hold true. Then,

£ e
LT = L (1) < L (1)
f a,
= (L8 () x Ly(£0)) x (E5™(M] o) x Log,,, (A])?) (mod Ru[1/p]¥)

-

6.10
. L (M 1) < LY (M 5)) x (Ly(£1) < Log,,,, (A)?)  (mod Rul1/5]).

Ly (M) Log,,; (Afp)?

where Ag and ATH are as in the statement of Conjecture 6.3.
a1



In particular, a slight variant of Conjecture 2.9 holds true in this scenario under the hypothesis of our
theorem. In fact, slightly more is true: The ambiguity (which is a factor in Ry[1/p]*) specialises at classical
points to an explicit algebraic number.

Proof. The second equality follows from a direct comparison of interpolation formulae of Léf 1)(T3T,1) and

L;fl) (M;fl) x Ly(f;), combined with the main result of [BCPdVP25] (Theorem 7.3 combined with Proposition
6.1 in op. cit.). O

6.4. Saito—Kurokawa lifts. In this subsection, we consider the case when II is a (one-parameter) family
of Saito-Kurokawa lifts of a Hida family f of ordinary modular forms. We remark that the assumptions of
§2.3 exclude the case of families of Saito-Kurokawa lifts, and our definition of a family of degree-16 p-adic
L-function in this scenario, as in the case of §6.1 and §6.3, is somewhat ad hoc. (cf. §6.4.7).

6.4.1. Let us put Tﬁ = TfJr ®Z, ®Z,(1), where f is a Hida family. In this section, we work under the
assumption that

e(f)=-1=c"(foo®c),

where £(f) is the common global root number of the family f, and ?/(f ® ¢ ® ¢¢) is the same for the family
f®o®o° at those weights that are balanced (i.e., the sum of any two of them is greater than the third one).

6.4.2. The Galois representation TQJr (resp. Tg ), which is free of rank 16 over Ry := Rg@Rg (resp. over
Rs = Rﬂ@RQ@RQ), admits the following decomposition:

(6.11) 1) ~ (T]8T1,8T;) & (1,8T;) 8r, R & (LET; (1)) Br, R, 7=23.

Tfl Tjg ijs
If 7 =2, we can further decompose each summand above as

(6.12) TJ ~ ((Tg@)adOTz) & (I ®r, Rz)) & (ad’T, ® Q,) ®r, Ro® (adT, (1) ® Q,(1)) ®%, R -

T;l T2T,2 Tg,e,
Observe that the degree—4 summands 7. ;’2 and T ;’3 are independent of variation in f.

6.4.3. We remark that:

- Region (a) corresponds to the g®-dominant region for T?il. We note that we have ky = k = ko in
the notation of §2.5.1.

- Region (b) is given by the condition 2 < ¢y —¢1 < 2k —4 (since k; = ks), together with 2k < ¢1 + co.
This is equivalent to ¢; < ¢a < ¢+ (2k —2), and 2k — 2 < ¢1 + ¢2; hence (since k > 2), it corresponds
to the balanced region for T;;r,r

- Region (c) in this case contains only points with ¢; = ¢a (since k1 = k2). In this situation, setting
¢ := ¢] = c3, the region is defined by the constraint ¢ > k, and therefore coincides with the balanced
region for T:;r,r

6.4.4. Let L,(ad’c)()\,s) denote the adjoint p-adic L-function in two variables, constructed by Schmidt
[Sch88] and Hida [Hid90], where s stands for the cyclotomic variable and X for the parameter of the Hida
family g. In view of [Das16, Theorem 2], we have

(6.13) Ly(c®a®)(\, A, wt(N)) = L;(adog)()\, 1) X ress—1(p(s) = L;(adog)()\, ) x(1—p 1,

where (,(s) is the p-adic Riemann zeta function, which has a pole at s = 1 with residue 1 — p~!.
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6.4.5. According to [Das16, Theorem 9.4], the two variable p-adic L-function
Ly(ad g)(A, ) := Ly(a ® a®) (A, A\, wt(X) — 1+ s)
verifies a functional equation
(6.14) Ly(ad @)\, 5) = eladry)(s) - Ly(ad o(1))(A, —s),
where L,(ad a(1))(A,s) := Ly(ad g)(A\, 1 + s), and e(aday)(s) is the epsilon factor described in [Dasl6,
Theorem 9.4]. More precisely, for any crystalline specialisation A of o, we have e(ad g, )(s) = A - B;th‘)*s,

where Ay € GX and B, is the conductor of the Gelbart—Jacquet lift of ¢, .
Let us put e(ad o) := e(ad g, )(0). Substituting s = 0 in (6.14), we obtain

(6.15) Ly(ad g)js=0(A) = €(ad g,) - Lp(ad g(1))s=0(A) = Lyp(ad g)js=1(A) -

6.4.6. We assume until the end of our paper that any one of the following equivalent conditions holds true:

i) The family ¢ is non-CM.

ii) g, is non-CM for some (any) classical specialisation X of o of weight at least 2.

iii) If there exists a Dirichlet character x = x such that for some (any) classical specialisation A of o

of weight at least 2 we have g, ~ g, ® x, then x =1 is the trivial character.

iv) ad® py is irreducible for for some (any) classical specialisation A of & of weight at least 2.
The equivalence of (i) and (ii) follows from [GV04, Proposition 8], whereas the equivalence of (ii) and (iii)
is well-known; cf. [Rib77, Rib80]. Finally, the equivalence of (iii) and (iv) is an immediate consequence of
Schur’s lemma.

In this case, the epsilon factor (at s = 0) e(ad’ o) interpolates to an analytic function e(ad” @) of A, cf.
[Mun23, Theorem C|. As we have e(ad g, ) = e(ad’ g ) (since the epsilon factor of the Riemann zeta function
at s = 0 equals to 1), it follows that e(ad gy ) interpolates to an analytic function e(ad o) = e(ad’ o) of .
We may then rewrite (6.15) as

(6.16) Ly(ad g)js=0 = €(ad @) - Lp(ad g)}s=1-
6.4.7. Based on the observations in §6.4.3-§6.4.5, together with (6.11) and (6.12), we set
L(T])? = LEN(T] ) x Le(T] ) x LEN(T],),  7=2,3.

6.4.8. We can finally concluse with the following factorisation statement. Note that Légc) (Tg,g) is the p-adic
L-function Ly(ad o)js—¢ (of Hida) and L;,gc)(T?]L,?)) equals L,(ad o(1))s—0 = Lp(ad )|s—1.
Proposition 6.22. In the setting of the present subsection, assume that [BCPAVP25, Conjecture 5.1] (ez-

tension of Gross—Kudla conjecture) holds true. Then,

L(T3)? = LT )? x LEe(T] ) x LEN(T] 5)

= LY(M],) x Ly(ad @) =g x Ly(ada(1))}s— x Log(A])? (mod R¢[1/p]¥)
- (e(adg) . LE*“(M;I) X L;(adog)lizl) X (Log(A£)2 x (1-— p_1)2) (mod Re[1/p]*).
Log,, . (5% )? Log,, (Af)?

As in the case of Theorem 6.21, slightly more is true: The ambiguity (which is a factor in R¢[1/p]*)
specialises at classical points to an explicit algebraic number.

Proof. The factorisation
LT 1) = C - Ly (M ;) x Log(Af)
is proved in [BS25, BCPdVP25] under the running hypotheses, whereas
(6.17) LZ()QC)(T;?’) = Ly(ad a(1))js=0 = L’p(adog(l)) x (1 — p_l) = L;(adog)‘szl x (1 — p_l)
is a consequence of Dasgupta’s results [Das16] that we have reviewed in §6.4.4 and §6.4.5. Finally,

Ll()gc)(T;Q) = Ly(ad g)js—0 = €(ad o) - Ly(ad g)|s—1 = e(ad o) -L;,(adog)|szl x(1—ph,
43
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where the second equality follows from (6.16), and the third from (6.17). O

6.4.9. We compare the factorisation statement in Proposition 6.22 with that in Conjecture 2.10 in the

generic scenario, explaining the meaning of Log,, iy (55\21) and Log,, (ATH)

In Proposition 6.22, we have set AIT—I =1-p1 AI, where A;[ is the family of Heegner cycles as before.

The cohomology class 5](\;3 is expected to arise as an “improved Beilinson-Flach class” BF +(1) Scaled by the

square-root of e(ad o) - L‘;al(M;l). We remark that the Beilinson-Flach elemement associated to ad® T, (1)
vanishes identically (due to the presence of an exceptional zero), and one expects an explicit reciprocity law
linking BF 4 , (1) to

Ly(ad 0)js=0 = €(ad o) - (1 — ph -L;(adO 0)|s=1
where the equality above follows from (6.13) combined with (6.16). The construction of the improved class
BF},4 o(1) s well as the reciprocity law alluded to above will be addressed in future work.

6.4.10. Observe that in this case, the algebraic counterpart of Proposition 6.22 reduces to a combination
of Palvannan’s main results and [Pall8] and [BS25, Theorem 6.7].

6.4.11. The factorisation problem for L,(16d) in the setting of §6.4 reduces to the tautological equality
0 = 0 as a consequence of our assumptions on e-factors.
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