
ON p-ADIC L-FUNCTIONS FOR GSp4×GL2

DAVID LOEFFLER AND ÓSCAR RIVERO

Abstract. We use higher Coleman theory to construct a new p-adic L-function for GSp4×GL2. While

previous works by the first author, Pilloni, Skinner and Zerbes had considered the p-adic variation of classes
in the H2 of Shimura varieties for GSp4, in this note we explore the interpolation of classes in the H1, which

allows us to access to a different range of weights. Further, we show an interpolation property in terms of
complex L-values using the algebraicity results established in previous work by the authors.
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1. Introduction

Let π and σ be cuspidal automorphic representations of GSp4 /Q and GL2 /Q respectively. Then we have
a degree 8 L-function L(π× σ, s), associated to the tensor product of the natural degree 4 (spin) and degree
2 (standard) representations of the L-groups of GSp4 and GL2. If π and σ are algebraic, then this L-function
is expected to correspond to a motive, and in particular we can ask whether it has critical values.

We suppose that π (or, more precisely, its L-packet) corresponds to a holomorphic Siegel modular eigen-
form of weight (k1, k2), for k1 > k2 > 2 integers, and that σ corresponds to a holomorphic elliptic modular

form of weight ` > 1. For L(π× σ, s) to be a critical value, we must have s = −(k1+k2+`−4)
2 + j for j ∈ Z, so

that L(π × σ, s) = L(Vp(π) ⊗ Vp(σ), j) where Vp(−) are the Galois representations corresponding to π and
σ; and the tuple (k1, k2, `, j) has to satisfy one of 3 different sets of (mutually exclusive) inequalities, which
we have outlined in more detail in the companion paper [LR23], corresponding to the cases (A), (D), (F ) in
Table 1 of op.cit.. In this paper, we focus on region (D), which is given by the inequalities

(1)
k1 − k2 + 3 6 ` 6 k1 + k2 − 3,

max(k1, `) 6 j 6 min(k2 + `+ 3, k1 + k2 − 3).

The corresponding values of s and ` are illustrated in the diagram below. (The “off-centre” regions (B), (E),
and the two grey diagonal lines, will be explained shortly.)
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We shall now consider the case when π and σ vary through p-adic families. We consider Coleman families
π for GSp4 (over some 2-dimensional affinoid space U ⊂ W×W, where W is the space of characters of Z×p ),
and similarly σ for GL2, over a 1-dimensional affinoid U ′ ⊂ W.

Following [LZ20b] and [LR23], we may conjecture that there exist 3 different p-adic L-functions in O(U ×
U ′ × W), denoted by L♠(π × σ,−) for ♠ ∈ {(A), (D), (F )}, whose values at integer points (k1, k2, `, j)
satisfying the inequalities (1) interpolate the corresponding complex L-values. (These depend on various
auxiliary data, which we suppress for now).

In [LZ21], building on the earlier work [LPSZ21], we proved a weakened form of this conjecture for region
(F ): we constructed a p-adic L-function over a codimension-1 subspace of the parameter space U ×U ′×W,
interpolating L-values in region (F ) and lying at the “right-hand edge” of the critical strip. Thus, for each
(k1, k2, `) such that ` 6 k1 − k2 + 1, our p-adic L-function captures just one among the (possibly) many
critical values of the L-function of the weight (k1, k2, `) specialisation of π × σ. This corresponds to the
solid grey diagonal line in the above figure. We also showed that certain (non-critical) values of this p-adic
L-function, corresponding to the elongation of the diagonal line to meet region (E), were related to syntomic
regulators of Euler system classes constructed in [HJS20]; the region (E) in the above diagram is precisely
the range of weights in which the geometric Euler system classes of op.cit. are defined.

Note 1.1. We would also expect a second Euler system construction for weights in region (B), but this is
only conjectural at present. �

The goal of this paper is to prove the analogue for region (D) of the first main result proved for region
(F ) in [LZ21]. That is, we define a p-adic L-function interpolating L-values along the “lower right edge” of
region (D), i.e. for (k1, k2, `, j) satisfying the conditions

k1 − k2 + 3 6 ` 6 k1, j = k2 + `− 3
(
⇔ s = `−k1+k2−2

2

)
.

So this p-adic L-function again lives over a codimension 1 subspace of the 4-dimensional parameter space,
but a different one from that of [LZ21]: it is indicated by the dotted grey line in the figure. We conjecture,
but do not prove here, a relation between this new p-adic L-function and syntomic regulators in region (E);
we hope to return to this in a subsequent work.

Remark 1.2. Both in the present paper and in [LZ21], the reason why we lose one variable in the construction
is that we do not know how to work with nearly-holomorphic modular forms in the framework of higher
Coleman theory. More precisely, L-values anywhere in region (F ), and in the “lower half” of region (D), can
be interpreted algebraically via cup-products in coherent cohomology; but the Eisenstein series appearing in
these expressions are only holomorphic if s lies at the upper or lower limit of the allowed range – otherwise,
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they are nearly-holomorphic but not holomorphic. We are optimistic that future developments in higher
Hida/Coleman theory may circumvent this barrier, allowing the construction of p-adic L-functions over the
full 4-dimensional parameter space with interpolating properties in region (F ) or region (D). �

The main result. It is convenient to re-index the weights by setting (r1, r2) = (k1 − 3, k2 − 3); for region
(D) to be non-empty we need r1 > r2 > 0, and in this case, (r1, r2) is the highest weight of the algebraic
representation of GSp4 for which π is cohomological.

To define the (imprimitive) p-adic L-function, we need to consider the following objects:

• A set of local conditions encoded in terms of the local data γS , introduced in §5.1 and §5.4, and
appearing in the factor ZS(πP × σQ, γS).

• A degree eight Euler factor E(D)(πP × σQ), where πP (resp. σQ) stands for the specialization of π
(resp. σ) at the point P (resp. Q).

• The completed (complex) L-function Λ(πP × σQ, s).
• A basis ξ⊗η of the space S1(π)⊗S1(σ), as introduced in [LZ21, Def. 10.4.1]. The p-adic L-function

does depend on that choice.
• The complex (resp. p-adic) period Ω∞(πP , σQ) (resp. ΩP (πP , σQ)), depending also on the special-

ization ξP ⊗ ηQ of the canonical differential ξ ⊗ η at (P,Q).

• The Gauss sum attached to χ−1
σ , denoted by G(χ−1

σ ).

Further, we need to introduce the notion of nice critical point. We say a point (P,Q) of U × U ′ is nice if
P = (r1, r2) and Q = (`) are integer points, with P nice for π and Q nice for σ, according to the definitions
of Section 5. Further, we say (P,Q) is nice critical if we also have r1 − r2 + 3 ≤ ` ≤ r1 + 3.

The main theorem we prove in this note, using in a crucial way the algebraicity result of [LR23], is the
following.

Theorem 1.3. There exists a p-adic L-function Limp
p,γS (π×σ) satisfying the following interpolation property:

if (P,Q) is nice critical, then

Limp
p,γS (π × σ)(P,Q)

Ωp(πP , σQ)
= ZS(πP × σQ, γS) · E(D)(πP × σQ) ·

G(χ−1
σ )Λ(πP × σQ, `−k1+k2−2

2 )

Ω∞(πP , σQ)
,

where (k1, k2, `) are such that πP has weight (k1, k2) and σQ has weight `.

The approach we follow to establish the theorem is the following:

(1) Use results of Harris and Su to express the automorphic period to be computed as a cup product in
the coherent cohomology of a Shimura variety associated with GL2×GL2. (This has already been
carried out in [LR23].)

(2) Use higher Coleman theory to reinterpret the cup product in terms of a pairing in coherent coho-
mology over certain strata in the adic Shimura varieties.

(3) Use the families of automorphic forms π and σ in order to define the p-adic L-function Limp
p,γS (π×σ; ξ).

(4) Derive an interpolation formula at critical points using the compatibility of the cup-product with
specialisation.

Remark 1.4. For this specific value s = `−k1+k2−2
2 , we can write L(πP × σQ, s) = L(V, 0), where V is the

Galois representation V (πP )⊗ V (σQ)(k2 + `− 3). This Galois representation always has one of its Hodge–
Tate weights equal to 0, which gives an intuitive explanation of why it should be “easier” to interpolate
L-values along this subspace of the parameter space rather than over the entire 4-dimensional parameter
space incorporating arbitrary cyclotomic twists.

If we specialise at a fixed P , giving a one-variable p-adic L-function Limp
p,γS (π × σ) associated to a fixed π

and a GL2 family σ, and we choose this σ to be a family of ordinary CM forms (arising from an imaginary
quadratic field K in which p is split), then L-values interpolated by Limp

p,γS (π×σ) can be interpreted as values
of the L-function of π twisted by Grössencharacters of K; and the restriction on the value of s implies that
the Grössencharacters arising have infinity-types of the form (n, 0). We expect that this L-function should
have an interpretation as a “p-adic L-function” , interpolating twists by characters of the ray class group of
K modulo p∞, for a specific choice of prime p above p; this will be pursued in more detail elsewhere. �
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Connection with other works. In [LZ20b], the authors work in the setting of cusp forms for the larger
group GSp4×GL2×GL2 and conjecture the existence of 6 different p-adic L-functions interpolating Gross–
Prasad periods, corresponding to the ‘sign +1’ regions (a), (a′), (c), (d), (d′) and (f) in the diagrams of
op.cit.. The case of region (f) was covered by the work of Loeffler–Pilloni–Skinner–Zerbes [LPSZ21] (see
also [LZ21]) using higher Hida and Coleman theory, and the p-adic L-function for region (c) was announced
by Bertolini–Seveso–Venerucci, also using tools from coherent cohomology.

If one formally replaces one of the two cusp forms by an Eisenstein series, then the Gross–Prasad
period becomes Novodvorsky’s integral computing the degree 8 L-function for GSp4×GL2; and regions
(a), (b), (d), (e), (f) correspond to the regions (A), (B), (D), (E), (F ) of the GSp4×GL2 figure above
(while the arithmetic meaning of the remaining regions (a′), (b′), (d′), (c) is less clear in this case). The
methods we develop in the present work for region (D) can be straightforwardly modified to interpolate
GSp4×GL2×GL2 Gross–Prasad periods along one edge of region (d) (and its mirror-image (d′)).

For weights in the “off-centre” regions (B) and (E), the complex L-value L(π × σ, s) vanishes to order
precisely 1, due to the shape of the archimedean Γ-factors. Beilinson’s conjecture predicts the existence of
canonical motivic cohomology classes whose complex regulators are related to L′(π × σ, s); and we expect
the images of these classes in p-adic étale cohomology to form Euler systems. For weights in region (E),
an Euler system has been obtained in recent work of Hsu, Jin and Sakamoto [HJS20]; and Zerbes and the
first author showed in [LZ20a] that the syntomic regulators of these classes are related to values (outside
its domain of interpolation) of the p-adic L-function interpolating critical values in region (F ). In the last
section of this article, we discuss the kind of reciprocity law one can expect relating the cohomology classes
of [HJS20] with the p-adic L-function of this article. We hope to come back to this question in a forthcoming
work.

Note that this paper requires as an essential input the computations of [LR23], where we compute the local
integrals both at the archimedean and the p-adic places. We expect to be able to extend the construction
to the whole region (D), adding the missing variable once we get a better comprehension of higher Coleman
theory for nearly holomorphic modular forms.

Aside from the works listed above, the only other work we know of which treats p-adic interpolation of
GSp4×GL2 L-values is the PhD thesis of M. Agarwal [Aga07]. Agarwal’s construction gives a one-variable
p-adic L-function, which appears to correspond to the restriction of our 3-variable function to the line where
k1 = k2 = ` = k for a parameter k, although his methods are very different from ours (using an Eisenstein
series on the unitary group U(3, 3)).

Acknowledgements. The authors would like to thank Sarah Zerbes for informative conversations related
to this work.

2. Setup: groups and Hecke parameters

2.1. Groups. We denote by G the group scheme GSp4 (over Z), defined with respect to the anti-diagonal

matrix J =

(
1

1
−1

−1

)
; and we let ν be the multiplier map G → Gm. We define H = GL2×GL1 GL2,

which we embed into G via the embedding

ι :
[(

a b
c d

)
,

(
a′ b′

c′ d′

)]
7→


a b

a′ b′

c′ d′

c d

 .

We sometimes write hi for the i-th GL2 factor of H. We write T for the diagonal torus of G, which is
contained in H and is a maximal torus in either H or G.

2.2. Parabolics. We write BG for the upper-triangular Borel subgroup of G, and PSi and PKl for the
standard Siegel and Klingen parabolics containing B, so

PSi =

(
? ? ? ?
? ? ? ?

? ?
? ?

)
, PKl =

(
? ? ? ?
? ? ?
? ? ?

?

)
.

We write BH = ι−1(BG) = ι−1(PSi) for the upper-triangular Borel of H.
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We have a Levi decomposition PSi = MSiNSi, with MSi
∼= GL2×GL1, identified as a subgroup of G via

(A, u) 7→
(
A

uA′

)
, A′ :=

(
1

1

)
tA−1

(
1

1

)
.

In this paper PSi and MSi will be much more important than PKl and MKl (in contrast to [LPSZ21]) so we
shall often denote them simply by P and M . The intersection BM := M ∩ BG is the standard Borel of M ;
its Levi factor is T .

2.3. Flag varieties and Bruhat cells. We write FLG for the Siegel flag variety P\G, with its natural
right G-action. There are four orbits for the Borel BG acting on FLG, the Bruhat cells, represented by a
subset of the Weyl group of G, the Kostant representatives, which are the smallest-length representatives of
the quotient WM\WG. We denote these by w0, . . . , w3; see [LZ21] for explicit matrices. Note that the cell
Cwi

= P\PwiBG ⊂ FLG has dimension `(wi) = i.

Remark 2.1. For g ∈ G, we can determine which cell Cwi
contains the point Pg ∈ FLG via a criterion in

terms of the span of the rows of the bottom left 2× 2 submatrix of g, as in Remark 5.1.2 of [LZ21]. �

Remark 2.2. Note that Cw0
and Cw3

are stable under P , while Cw1
t Cw2

forms a single P -orbit. �

Analogously, for the H-flag variety FLH = BH\H, we have 4 Kostant representatives w00 = id, w10 =((
0 1
−1 0

)
, id

)
, similarly w01, w11 (with the cell Cwij

having dimension i + j). (This is the whole of the

Weyl group of H, since the Levi subgroup of MH = T is trivial.)

2.4. Twisted embeddings.

Definition 2.3. Let us write τ =

((
1
1 1

)
, 1

)
∈M(Z).

(This was denoted γ in [LPSZ21], but γ was also used for a Satake parameter, so we use a different letter
here.) Note that τ represents the unique open T -orbit for the M -flag variety BM\M .

2.5. Coefficient sheaves. We retain the conventions about algebraic weights and roots of [LZ21]. In par-
ticular, we identify characters of T with triples of integers (r1, r2; c), with r1 +r2 = c modulo 2 corresponding
to diag(st1, st2, st

−1
2 , st−1

1 ) 7→ tr11 t
r2
2 s

c. With our present choices of Borel subgroups, a weight (r1, r2; c) is
dominant for H if r1, r2 ≥ 0, dominant for MG if r1 ≥ r2, and dominant for G if both of these conditions
hold. (We frequently omit the central character c if it is not important in the context.)

For our further use, we briefly recall the conventions of loc. cit. about sheaves. The Weyl group acts on
the group of characters X∗(T ) via (w · λ)(t) = λ(w−1tw). As discussed in loc. cit., we can define explicitly
wmax
G , the longest element of the Weyl group, as well as ρ = (2, 1; 0), which is half the sum of the positive

roots for G. There is a functor from representations of PG to vector bundles on XG,Q; and we let Vκ, for
κ ∈ X•(T ) that is MG-dominant, be the image of the irreducible MG-representation of highest weight κ.
Given an integral weight ν ∈ X•(T ) such that ν + ρ is dominant, we define

κi(ν) = wi(ν + ρ)− ρ, 0 ≤ i ≤ 3,

here as usual ρ is half the sum of the positive roots. These are the weights κ such that representations of

infinitesimal character ν∨ + ρ contribute to RΓ(SG,tor
K ,Vκ); if ν is dominant (i.e. r1 > r2 > 0), they are the

weights which appear in the dual BGG complex computing de Rham cohomology with coefficients in the
algebraic G-representation of highest weight ν.

2.6. Hecke parameters. With the notations of the introduction, let π be a cuspidal autormophic repre-
sentation of G, and let p be a prime. If πf is unramified at p, we write α, β, γ, δ for the Hecke parameters of
π′p, and Pp(X) for the polynomial (1− αX) . . . (1− δX). The Hecke parameters are algebraic integers over
a number field E, and are well-defined up to the action of the Weyl group. They all have complex absolute
value pw/2, where w := r1 + r2 + 3, and they satisfy αδ = βγ = pwχπ(p), where χπ(p) is a root of unity.

Let IwG(p) denote the Iwahori subgroup. We shall consider the following operators in the Hecke algebra
of level IwG(p), acting on the cohomology of any of the sheaves introduced before:

• The Siegel operator USi = [diag(p, p, 1, 1)], as well as its dual U ′Si = [diag(1, 1, p, p)].
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• The Klingen operator UKl = p−r2 · [diag(p2, p, p, 1)], as well as its dual U ′Kl = p−r2 · [diag(1, p, p, p2)].
• The Borel operator UB = USi · UKl, as well as its dual U ′B = U ′Si · U ′Kl.

For a place v of E above p, we shall say that π is Siegel ordinary at p with respect to v if the operator USi

on (π′p)
Si(p) has an eigenvalue λ which is a p-adic unit. We define similarly the condition of being Klingen

ordinary and we say that π is Borel-ordinary at p if it is both Siegel and Klingen ordinary. The condition
of being Siegel ordinary at p may be rephrased by requiring that vp(α) = 0. The condition of being Klingen
ordinary is equivalent to vp(αβ) = r2 + 1. In this work, however, we will usually consider more relaxed
conditions corresponding to being finite slope. We explore this issue in the next section.

For a cuspidal automorphic representation σ of GL2, write a, b for the Hecke parameters of σ′p. We adopt
the convention that vp(a) ≤ vp(b) and say that σ is Borel-ordinary at p (with respect to v) if vp(a) = 0.

2.7. Slope conditions. We consider the Hecke operators with the previous normalizations acting on the
cohomology of the different sheaves Vκ. Thus each operator is “minimally integrally normalised” acting on
the classical cohomology (slopes are ≥ 0). Write Kp for some fixed choice of open compact away from p. Then
[BP20, Conj. 5.29] predicts lower bounds for the slopes of the Hecke operators acting on the overconvergent
cohomology complexes RΓw(Kp, κ)± and RΓ(Kp, κ, cusp)±, whose precise definitions are given in loc. cit.;
and there are similar conjectures for the locally-analytic cohomology complexes.

We compute for various elements w ∈ WG the character w−1wmax
G (κ+ ρ)− ρ, and how it pairs with the

anti-dominant cocharacters diag(1, 1, x, x, ) and diag(1, x, x, x2) defining the operators U ′Si and U ′Kl. We take
κ = κ2 = (r2 − 1,−r1 − 3; r1 + r2), and subtract r2 from all entries in the bottom row since this is our
normalising constant for U ′Kl. We summarize the slope bounds in the following table.

w = id w1 (w2) w3

U ′Si r1 + 2 0 (0) r2 + 1
U ′Kl r1 − r2 + 1 r1 − r2 + 1 (0) 0

We do not know this conjecture in full, but we do know a weaker statement in which we replace
w−1wmax

G (κ2 + ρ)− ρ with w−1wmax
G κ2. This gives the following bounds:

w = id w1 (w2) w3

U ′Si r1 + 2 −1 (−1) r2 − 2
U ′Kl r1 − r2 + 1 r1 − r2 + 1 (−3) −3

Proposition 2.4. For the weight κ2 = (r2 − 1,−r1 − 3; r1 + r2), with r1 ≥ r2 ≥ 0, we have the following.

• The “small slope” condition (−, ssM (κ2)) is

λ(U ′Si) < r1 + 2, λ(U ′Kl) < r1 − r2 + 1.

• The “strictly small slope” condition (−, sssM (κ2)) is

λ(U ′Si) < r1 + 2, λ(U ′Kl) < r1 − r2 − 2.

Proof. This follows from the previous tables. �

3. Flag varieties and orbits

Let P denote the Siegel parabolic subgroup of G = GSp4, and FLG = P\G with its natural right G-action.

3.1. Kostant representatives. There are four orbits for the Borel BG acting on FLG (Bruhat cells), repre-
sented by a subset of the Weyl group of G, the Kostant representatives (a distinguished set of representatives
for the quotient WMG

\WG where MG is the Levi of P ). We denote these by w0, . . . , w3; see [LZ21] for explicit
matrices. Note that the cell Cwi

= P\PwiBG has dimension i.

Remark 3.1. For g ∈ G, we can determine which cell Cwi
contains the point Pg ∈ FLG via a criterion in

terms of the span of the rows of the bottom left 2× 2 submatrix of g, as in Remark 5.1.2 of [LZ21]. �

Analogously for H we have 4 Kostant representatives w00 = id, w10 =

((
0 1
−1 0

)
, id

)
, similarly w01, w11

(with the cell Cwij having dimension i + j). (This is the whole of the Weyl group of H, since the maximal
compact of H is abelian and hence the Weyl group of its Levi is trivial).
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Remark 3.2. Either for G or for H, each cell will determine a subspace of the Iwahori-level Shimura variety
(as an adic space), via pullback along the Hodge–Tate period map. This is the locus where the relative
position of the Hodge filtration and level structure on the p-divisible group lies in the given Bruhat cell. In
particular, the “smallest” cell (w0 or w00) corresponds to the multiplicative locus, and the “largest” one to
the étale locus. �

3.2. A twisted embedding of flag varieties. Consider the elements

τ =

(
1
1 1

1
−1 1

)
∈MSi(Zp), τ ] = ι(w01)−1τw2 ∈ G(Zp).

We will consider the translated embedding ι] : H → G given by h 7→ ι(h)τ ]. The map FLH → FLG
induced by ι] by construction sends [w01] to [w2]. We also have projection maps πi : FLH → FLGL2

∼= P1,
and the product (ι], π1, π2) evidently sends w01 to ([w2], [id], [w]) (where the unlabelled w is the GL2 long
Weyl element).

If we equate (x : y) ∈ P1 with the orbit Bg ∈ B\G, where g is any invertible matrix of the form ( ? ?x y ),
then ι] sends ((x : y), (X : Y )) to

PSi ·


? . . . . . . ?
? . . . . . . ?
−X Y ? ?
−y x ? ?

 .

Using this and the explicit description of the Bruhat cells in terms of the bottom left corner of the matrix,
we see that:

• the preimage of CGid is empty;
• the preimage of CGw1

is the point ((1 : 0), (0 : 1)) (the image of [w10] ∈ FLH);

• the preimage of CGw2
is a copy of the affine line, corresponding to points of the form

BH
(
( 1
x 1 ) ,

(
1
−x 1

))
w01.

Proof. The condition for the above matrix to lie in XG
w2

is that
(−X Y
−y x

)
be singular, i.e. Xx = Y y; and

the condition for it to lie in CGw2
is that the span of the rows not be (0 : 1), so X 6= 0 and y 6= 0. So

we can wlog take X = 1 and y = 1, leaving the equation Y = x; i.e. our point was BH (( ? ?x 1 ) , ( ? ?1 x )) =
BH (( ? ?x 1 ) , ( ? ?

−x 1 ))w01. �

Notation. Recall XG
w =

⋃
w′6w C

G
w′ (closed subvariety), and Y Gw =

⋃
w′>w C

G
w′ (open subvariety).

Proposition 3.3. We have

(ι])−1
(
XG
w2

)
∩ π−1

2

(
Y GL2
w

)
= (ι])−1

(
CGw2

)
∩ π−1

1 (C id
GL2

) ∩ π−1
2

(
CGL2
w

)
.

(Note C id
GL2

is not a typo: it denotes B\BB, the big cell at the origin, cf. [BP20, §3.1]. )

Proof. Since the single point (ι])−1(CGid ∪ CGw1
) = [w10] does not map to Y GL2

w under π2, we conclude that

(ι])−1
(
XG
w2

)
∩ π−1

2

(
Y GL2
w

)
is contained in (ι])−1(CGw2

). �

3.3. Some tubes. We now work with the flag variety as an adic space and consider various tubes inside
FLG×P1 ×P1. As usual XGw denotes the tube of XG

w,Fp
etc.

We shall set
Z0 = XGw2

× everything× YGL2
w ,

and
U0 = YGw2

×XGL2

id × everything.

Then Z0 is closed, U0 is open, and both are stable under the action of IwG× IwGL2
× IwGL2

; and U0 ∩ Z0 is
a partial closure of the (w2, id, w) Bruhat cell for G×GL2×GL2.

We need to allow smaller “overconvergence radii”, for which we use the action of the element ηG =
diag(p3, p2, p, 1) and its cousin η = ( p 1 ).

Definition 3.4. Let us set

Zm =
(
XGw2
· ηmG

)
× everything×

(
YGL2
w · η−m

(
1 Zp

0 1

))
.
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We have Z0 ⊇ Z1 ⊇ Z2 . . . , by [BP20, Lemma 3.23], and Zm is stable under Iw(pt) for t > 3m+ 1.
Recall that we have explicit coordinates on the Zariski-open neighbourhood Uw2 = P\PPw2 of [w2] ∈

FLG, given by P\P
(

1
1

x y 1
z x 1

)
w2, as usual. Then one computes that

XGw2
∩ Uan

w2
=
{

(x, y, z) : x /∈ B0 or y /∈ B0 or z ∈ B◦0
}
,

and ηG preserves Uan
w2

and acts in these coordinates via (x, y, z) 7→ (p−1x, p−3y, pz). Thus

ZGm ∩ Uan
w2

=
{

(x, y, z) : x /∈ B−m or y /∈ B−3m or z ∈ B◦m
}
,

and a similar computation identifies YGL2
w with B0, and YGL2

w · η−m
(

1 Zp

0 1

)
with Bm + Zp.

On the other hand, we can define

Un =
(
YGw2
· η−mG NBG

(Zp)
)
×
(
XGL2

id · ηn
)
× everything.

Again, this is stable under Iw(pt) for t > n+ 1, and the G-part of the locus is given by

UGn ∩ Uan
w2

= {(x, y, z) : x ∈ Bn + Zp, y ∈ B3n + Zp} ,
with no condition on z; and the projection to the first GL2 coordinate is just B◦n.

Lemma 3.5. The intersection ZGm ∩ UGn is contained in Uan
w2

, for all m,n > 0.

Proof. It suffices to check this for (m,n) = (0, 0); see Lemma 3.21 of [BP20]. �

3.4. Pullback to H. Guided by the zeta-integral computations of [LR23], we shall consider the map

ι]] : FLH → FLG×FLH , h 7→
(
ι](h), h1

(
pt

1

)
, h2

)
.

for some t > 1.

Proposition 3.6. If m > 3n > 0, then

(ι]])−1(Zm ∩ Un) = (ι]])−1(Zm),

and in particular this preimage is closed in FLH .

Proof. We know that the pullback of Z0 is contained in the big cell, so we can compute it in coordinates.
We find that the inequalities on (z1, z2) for it to land in Zm are:

z1 + z2 ∈ B◦m, z2 ∈ Bm + Zp.

For Zm ∩ Un we add the extra inequalities

z2 ∈ B3n + Zp, ptz1 ∈ B◦n.
If m > 3n then the latter equations are a consequence of the former. �

3.5. Periods maps and overconvergent cohomology. We consider the analytifications San
G,K = (SK ×

Spec(Qp))
an and Stor

G,K = (Stor
G,K×Spec(Qp)

an, and similarly for H and G×H (denoted always by calligraphic

letters). Write Stor
G,Kp for the perfectoid space lim←Kp

Stor
G,KpKp

, which allows us to consider the Hodge–Tate

period map
πtor

HT,G : Stor
G,Kp −→ FLG,

which for every open compact Kp ⊂ G(Qp) descends to a map of topological spaces (c.f. [BP20, §4.5]

πtor
HT,G,Kp

: Stor
G,KpKp

−→ FLG/Kp.

There are also analogous maps for H and G×H.
Then [LZ21, Thm. 6.2.1] holds in the same way, replacing the level structure KH

� by KH
4 , defined as

follows

Definition 3.7. Let KH
4 (pt) = KH

Iw(pt) ∩ τ ]KG
Iw(pt)(τ ])−1. It is concretely given by

KH
4 (pt) = {h ∈ H(Zp) | h =

((x 0
0 z

)
,

(
z 0
0 x

))
mod pt for some x}.
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The choices of neighbourhoods we have made are sufficient to get the maps working, including the compati-
bility with the classical cohomology via compact-support cohomology of Zm. Write ZHm for the corresponding
preimage in H. Let UGn ⊂ SG×H,Iw(pt) and ZHm ⊂ UHn ⊂ SH,4(pt) denote the preimages of the subsets

UGn ⊂ FLG and ZHm ⊂ UHn ⊂ FLH under πG×HIw and πH4.

RΓ(UG0 ,V) // RΓ(Stor
H,4(pt), (ι])∗(V)

RΓZm
(UG0 ,V)

OO

��

// RΓZH
m

(Stor
H,4(pt), (ι])∗(V))

OO

RΓZm(UGn ,V)

55

Here, the horizontal maps correspond to (ι])∗, while the vertical ones are the usual restriction and core-
striction.

4. Branching laws and sheaves of distributions

In this section, we introduce the necessary tools to p-adically interpolate the pairing of the previous section.
We keep the notations of [LZ21, §8] and review some of the more relevant results of loc. cit., focusing on the
changes we need in our setting. Note in particular that the discussions and results of §6 hold verbatim, with
the obvious changes in Prop. 6.4.1.

Along this section, we will frequently consider the projections of the embedding ι]] on each factor: the
first component corresponds to ι] : FLH → FLG, and the second, referred as ιp, is the map

ιp : FLH → FLH , (h1, h2) 7→
(
h1

(
pt

1

)
, h2

)
.

We also write υ = υ(pt) =

((
pt

1

)
, 1

)
∈M(Z).

4.1. Torsors. The map x 7→ x−1 : G → FLG allows us to regard G as a right PG-torsor over FLG, and
similarly to regard G/NG → FLG as a right MG-torsor. We consider their analytifications

PG : G → FLG and MG : G/NG → FLG

which are torsors over FLG under the analytic groups PG and MG respectively. We similarly define torsors
over the flag varieties H, H1 and H2.

Definition 4.1. Define PGHT and MG
HT to be the pullbacks via πGHT of the torsors PG and MG; there are right

torsors over SG,Iw(pt) for the groups PG and MG. We similarly define PHHT and MH
HT, PHi

HT and MHi

HT for
i = 1, 2.

Definition 4.2. For n > 0, let M1
G,n be the group of elements which reduce to the identity modulo pn.

Define
M�G,n =M1

G,n ·BMG
(Zp),

which is an affinoid analytic subgroup containing IwMG
(pn). A similar definition applies to MH = T ; we

write the group as T �n = T (Zp)T 1
n .

Consider in the same way

T �n = {diag(t1, t2, νt
−1
2 , νt−1

1 ) ∈ T �n : t1 − t2 ∈ Bn}.
As in [LZ21, Prop. 7.2.5], we also consider the étale torsors MG

HT,n, MG
HT,n,Iw and MH

HT,n,� arising as

the reduction of structure of the torsors MG
HT over UGn , MH

HT over UHIw,n and MH
HT over UHn , respectively.

Proposition 4.3. We have an equality of M�G,n-torsors over UHn,�:

(ι])∗(MG
HT,n,Iw) =MH

HT,n,� ×[T �n ,τ ]M�G,n,

where we regard T �n as a subgroup of IwMG
(pt)M1

G,n via conjugation by τ .
9



Proof. This follows by checking the analogous statement on the flag variety, noting that there is a commu-
tative diagram of adic space:

KH
4 (pt)H1

n
//

��

KG
Iw(pt)G1

n

��
BH\BHw01K

H
4 (pt)H1

n
// PG\PGw2K

G
Iw(pt)G1

n.

Here, the vertical maps are given by h 7→ BH\BHh−1 on the left, and g 7→ PG\PGw2g
−1 on the right; the

lower horizontal map is ι] is BHh 7→ PGhτw2, and the map along the top making the diagram commute is
h 7→ (τ ])−1hτ ].

Then we may conclude as in [LZ21, Prop. 7.2.7]. �

A straightforward adaptation of these techniques can be applied to the second factor ιp, yielding to an

equality of M�H,n-torsors over UHn,�,

(ιp)
∗(MH

HT,n,Iw) =MH
HT,n,� ×[T �n ,υ]M�H,n,

where we regard T �n as a subgroup of IwMH
(pt)M1

H,n via conjugation by υ. Observe that conjugation by υ
does not introduce denominators in any element of MH , and hence the previous objects are well defined.

4.2. Analytic characters and analytic inductions.

Definition 4.4. Let n ∈ Q>0. We say that a continuous character κ : Z×p → A×, for (A,A+) a complete
Tate algebra, is n-analytic if it extends to an analytic A-valued function on the affinoid adic space

Z×p · Bn ⊂ Gad
m .

This definition extends to characters T (Zp)→ A×: the n-analytic characters are exactly those which extend

to T �n .

Let n0 > 0 and assume that κA : T (Zp)→ A× is an n0-analytic character. For ? ∈ {G,H} and n ≥ n0,
let M1

?,n be the affinoid subgroup of M? defined above, and let BMG
be the Borel of M?.

Definition 4.5. For n ≥ n0, define

V n−an
G,κA

= anInd
(M�

G,n)

(M�
G,n∩BG)

(w0,M?
κA)

=
{
f ∈ O(M�G,n)⊗̂A : f(mb) = (w0,MκA)(b−1)f(m), ∀m ∈M�G,n, ∀b ∈M�G,n ∩ BG

}
.

We define a left action of M�G,n on V n−an
G,κA

by (h · f)(m) = f(h−1m).

Write Dn−an
G,κA

for the dual space, and 〈·, ·〉 for the pairing between these; we equip Dn−an
G,κA

with a left action

of the same group M�G,n, in such a way that 〈hµ, hf〉 = 〈µ, f〉.

As shown in [LZ21, Prop. 8.2.2], for a character κ of the form (ρ1, ρ2;ω) the action of (

(
a b
c d

)
, ν) on

f ∈ O(Bn)⊗̂A is given by

((

(
a b
c d

)
, ν)f)(z) = f

( az − c
−bz + d

)
(−bz + d)ρ1−ρ2(ad− bc)ρ2ν(ω−ρ1−ρ2)/2.

4.3. Branching laws in families. Recall that for a Tate algebra A endowed with an n0-analytic character
κA : T (Zp) → A× as above, and additionally with a character λ : (1 + Bn)× → A×, we may define the
krakenfish function as Kλ(z) = λ(1 + z), viewed as an element of V n−an

G,κA
.

The following lemma is analogous to [LZ21, Lemma 8.3.2], but recall that now the objects involved in the
definition of T �n are different.

Lemma 4.6. The function Kλ is an eigenvector for (τ ])−1T �n τ ], with eigencharacter w0,MκA + (λ,−λ; 0).

Proof. This follows from the computations of [LZ21, §8.3] by noting that τ lies in the Siegel parabolic and
that only the projection to the Levi subgroup matters for this computation. �
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The following result is a straightforward consequence of the previous lemma.

Proposition 4.7. Pairing with Kλ defines a homomorphism of T �n -representations

(ι])∗(Dn−an
G,κA

) −→ Dn−an
H,w01,MκA+(λ,−λ;0).

4.4. Labelling of weights. As above, let (A,A+) be a Tate algebra over (Qp,Zp). Given a weight νA :
T (Zp)→ A× for some coefficient ring A, we may define κA : T (Zp)→ A× by

κA = −w0,Mw2(ν + ρ)− ρ.
If νA is (ν1, ν2;ω) for some νi, ω : Z×p → A×, then κA = (ν1,−2−ν2;ω). Its Serre dual is κ′A = (κA+2ρnc)∨.
This can be written as (ν2 − 1,−3− ν1; c) = w2(νA + ρ)− ρ.

4.5. Sheaves on G. Let 1 ≤ n < t be integers. The following definition is just [LZ21, Def. 9.2.1].

Definition 4.8. The sheaf Vn−an
G,νA

over UGn is given by the product

Vn−an
G,νA

=MG
HT,n,Iw ×M

�
G,n V n−an

G,κA
.

We define similarly another sheaf Dn−an
G,νA

as

Dn−an
G,νA

=MG
HT,n,Iw ×M

�
G,n Dn−an

G,(κA+2ρnc).

As discussed in loc. cit., the sheaves Vn−an
G,νA

and Dn−an
G,νA

are sheaves of A-modules compatible with base-

change in A. If A = Qp and νA = (r1, r2; c) for integers r1 ≥ r2 ≥ −1, we have classical comparison
maps

VG,κ1 ↪→ Vn−an
G,νA

, Dn−an
G,νA

� VG,(κA+2ρnc)∨ = VG,κ2 .

4.6. Sheaves on H. We mimic the same definitions for H, using now the element w01 ∈M WH in place of
w2. Given an n-analytic character τA, we define κHA = −τA − 2ρH , and we set

Vn−an
H,�,νA =MH

HT,n,� ×T
�
n V n−an

H,κH
A

and

Dn−an
H,�,τA =MH

HT,n,Iw ×T
�
n Dn−an

H,(κH
A +2ρH)

.

4.7. Branching for sheaves.

Definition 4.9. We say that A-valued, n-analytic characters νA and τA of T (Zp) are compatible if νA =
(ν1, ν2; ν1 + ν2), τA = (τ1, τ2; ν1 + ν2), for some characters νi, τi of Z×p , and we have the relation

τ1 − τ2 = ν1 − ν2 − 2.

If νA, τA are compatible, then taking λ = ν1 − τ1 = ν2 − τ2 + 2, we obtain a homomorphism of T �n -
representations

Dn−an
G,(κA+2ρnc) −→ Dn−an

H,−τA .

Proposition 4.10. Pairing with Kλ induces a morphism of sheaves over UHn :

(ι])∗(Dn−an
G,νA

) −→ Dan
H,�,τA .

This morphism is compatible with specialisation in A, and if A = Qp and ν = (r1, r2; r1 +r2), τ = (t1, t2; r1 +
r2) are algebraic weights with r1 − r2 ≥ 0 and ri, ti ≥ −1, then this morphism is compatible with the map of
finite dimensional sheaves (ι])∗(Vκ2

)→ VHτ , where Vκ2
is as in [LR23, §2].

In particular, given νA and τA satisfying τ1 − τ2 = ν1 − ν2 − 2, we have a morphism of complexes of
A-modules

(2) (ι])∗ : RΓGw,an(νA, cusp)−,fs −→ RΓZH
m

(UHn ,Dn−an
H,�,τA(−DH)).

The map ιp induces in the same way a morphism of sheaves over UHn and an analogous morphism at the
level of complexes of A-modules.
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4.8. Locally analytic overconvengent cohomology. We adopt the same definitions regarding cuspidal,
locally analytic, overconvergent cohomology of [LZ21, §9.5]. In particular,

RΓGw,an(νA, cusp)−,fs = RΓIGmn

(
UGn ,D

n,− an
G,νA

(−DG)
)−,fs

,

and similarly for the non-cuspidal version. This complex is independent of m, n and t, and is concentrated
in degrees [0, 1, 2].

4.9. Pairings and duality. We may define

RΓw01,an(SH,Iw(pt), τA)+,† = lim
→
RΓ(ZHm,Iw(pt),Van

H,Iw,τA).

The following theorem will be crucially used in the definition of the p-adic L-function.

Theorem 4.11. The cup product induces a pairing

H1
w01,an(SH,Iw(pt), τA, cusp)−,† ×H1

w01,an(SH,Iw(pt), τA)+,† −→ A,

whose formation is compatible with base-change in A, and which is compatible with the Serre duality pairing
on classical cohomology when A = Qp and ν, τ are classical weights.

Proof. The map is defined by combining the pullback maps of (2) for both factors and the pairing between
the cohomology groups H1

w01,an(SH,Iw(pt), τA, cusp)−,† and H1
w01,an(SH,Iw(pt), τA)+,†. By construction, this

is compatible with Serre duality for each classical weight. �

4.10. A Künneth formula for cohomology with support. In order to define the p-adic L-function, we
need to p-adically interpolate the cohomological pairing between H0 and H1. This may be regarded as a
Künneth formula for cohomology with support.

Proposition 4.12. The cup product induces a pairing

H0
w0,an(SGL2,Iw(pt), τ1)† ×H1

w1,an(SGL2,Iw(pt), τ2, cusp)† −→ H1
w01,an(SH,Iw(pt), τA)−,†,

where τA = (τ1, τ2) is a weight for H.

Proof. This follows as in [LZ21, Thm. 9.6.2] by the general theory of Boxer–Pilloni [BP20, Thm. 6.38]. �

5. The p-adic L-function

In this section we discuss how to use higher Coleman theory to reinterpret the Harris–Su pairing, as
discussed in [LR23, §3], in coherent cohomology over certain strata in suitable adic Shimura varieties. In
particular, this analysis allows us to perform p-adic interpolation provided that there exist families of co-
homology classes interpolating the different elements involved there. We implicitly use some of the results
discussed along [LPSZ21, §9,10].

If not specified otherwise, π and σ are cohomological cuspidal automorphic representations of GSp4 and
of GL2, defined over some field E, both globally generic and unramified outside S. Let L be some p-adic
field with an embedding from E.

5.1. Tame test data. As in [LZ21, §10.2], we fix the following data:

• M0, N0 are positive integers coprime to p with M2
0 | N0, and χ0 is a Dirichlet character of conductor

M0 (valued in L).
• M2, N2 are positive integers coprime to p with M2 | N2, and χ2 is a Dirichlet character of conductor
M2 (valued in L).

As usual, we use the hat to denote the adelic counterpart of the characters. We consider that the automorphic
representations π of G has conductor N0 and character χ̂0 (up to twists by norm), and similarly that the
representation σ of GL2 has conductor N2 and character χ̂2 (up to twists by norm).

Let S denote the set of primes dividing N0N2. By tame test data we mean a pair γS = (γ0,S ,ΦS), where:

• γ0,S ∈ G(QS), where QS =
∏
`∈S Q`;

• ΦS ∈ C∞c (Q2
S , L), lying in the (χ̂0χ̂2)−1-eigenspace for Z×S .
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We let KS be the quasi-paramodular subgroup of G(QS) of level (N0,M0); and we let K̂S be the open

compact subgroup of G(QS) defined in [LZ21, §10.2]. We also use analogous notations for Kp and K̂p, the
prime-to-p part of the level and its adelic counterpart, respectively.

5.2. p-adic families. As a general piece of notation, we use the conventions regarding p-adic families of
[LZ21, §10.4]. In particular, we consider U ⊂ W2 an open affinoid disc, and let r1, r2 : Z×p → O(U)× be the

universal characters associated to the two factors of W2. Let νU be the character (r1, r2; r1 + r2) of T (Zp).
Following [LZ21, §10.4], there is a family of automorphic representations π over the open affinoid disc

U introduced at the beginning of the section. Let S1(π) = H1(M•,−,fscusp,w2
) be the sheaf introduced in Def.

10.4.1 of loc. cit., which is free of rank 1. We shall then choose a basis ξ of that space. Since the spaces of

higher Coleman theory have an action of G(Ap
f ), we can make sense of γ0,S · ξ as a family of classes at tame

level K̂p, which is still an eigenfamily for the Hecke operators away from S.

Definition 5.1. We say a point P ∈ U(L) is nice for π if the weight of P is (r1, r2) ∈ U∩Z2 with r1 ≥ r2 ≥ 0
and the specialisation at P of the system of eigenvalues λ−π attached to the family π is the character of a
p-stabilised automorphic representation πP , which is cuspidal, globally generic, and has conductor N0 and
character χ0.

This implies that the fibre of S1(π) at P maps isomorphically to the πP -eigenspace in the classical
H1(Kp, κ1(ν), cusp); in particular, this eigenspace is 1-dimensional.

Proceeding now as in [LZ21, §10.5], we can consider analogous objects for GL2. In particular, we may
choose a disc U ′ ⊂ W and a finite-slope overconvergent p-adic family of modular eigenforms G over U ′ (of
weight `̀̀+ 2 where `̀̀ is the universal character associated to U ′). Then, we say a point Q ∈ U ′ is nice for G if
it lies above an integer ` ∈ U ′ ∩Z≥0, and the specialisation of G at Q is a classical form. We further require
that the fibre of S1(σ) at Q maps isomorphically to the σQ-eigenspace in the classical H1 (and in particular,
this eigenspace is 1-dimensional). We write σ` for the corresponding automorphic representation, with the
normalisations of loc. cit. As before, we shall take a basis η of S1(σ).

Remark 5.2. The inequalities defining region (D) automatically imply that we are not dealing with non-
cohomological weights, and hence we do not need to consider an étale covering, as it was the case for region
(F ). �

5.3. Construction of the imprimitive p-adic L-function. We refer to [LPSZ21, §7.4] for the construc-

tion of p-adic family of Eisenstein series EΦ(p)

(0, t − 1), which depends on a prime-to-p Schwartz function
Φ(p). According to [LZ21, Prop. 10.1.2], it is an overconvergent cusp form of weight t.

For our construction, we need to recall the pairing

H0
w0,an(SGL2,Iw(p2), τ1)† ×H1

w1,an(SGL2,Iw(p2), τ2, cusp)† −→ H1
w01,an(SH,Iw(p2), τA)−,†

introduced in Theorem 4.12. From now on, let A = O(U × U ′). Next, we can consider

EΦ(p)

(0, t− 1)�G(χ−1
2 )η ∈ H1

w01,an(SH,Iw(p2), τA)+,†,

where t = r2 − r1 + `̀̀ − 2 and the tame level is taken to be H ∩ K̂p.
Similarly, let ξ be an element in H1

w01,an(SH,Iw(p2), τA)−,†.

Definition 5.3. We let Lp,γS (π × σ; ξ; η) denote the element of A defined by

〈(ι])∗(γ0,S · ξ), EΦ(p)

(0, t− 1)�G(χ−1
2 )η〉.

This is a three-variable p-adic L-function, where we may vary the weights (r1, r2) and we keep the linear
condition in terms of (r1, r2, `, t), namely t = r2 − r1 + `̀̀ − 2 (alternatively, s = `−r1+r2−2

2 ).

Definition 5.4. • We say a point (P,Q) of U × U ′ is nice if P = (r1, r2) and Q = (`) are integer
points, with P nice for π and Q nice for σ.

• We say that (P,Q) is nice critical if we also have ` ≤ r1 − r2 + 1 (the specialization t at (P,Q) is
≥ 3).

• If instead we have r1 − r2 ≤ `− 2 ≤ r1, we say that P is nice geometric.
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Remark 5.5. We hope that there should be a p-adic L-function analytically varying in all 4 parameters (the
two GSp4 weights together with the two GL2 factors), but this cannot be achieved with our methods. �

There are two natural questions:

• Along the critical region, can we express the p-adic L-function as an (explicit) multiple of the complex
L-value?

• Along the geometric region, can we prove an explicit reciprocity law involving the logarithm of the
Euler system of [HJS20]?

In the following sections we give a partial answer to the first one, while the second one will be explored
in a forthcoming work.

5.4. The correction term ZS. This section introduces a correction term ZS which depends on the choice of
local data, and which will arise in the interpolation property of the p-adic L-function. Its definition depends
on certain Whittaker models properly introduced in [LR23, §6]; since this will have a minor relevance in this
work, we just refer the interested reader to our previous paper. In particular, with the notations introduced
in loc. cit., we may consider the integral Z(W,Φ1,W

(`); s).
We shall set

ZS(π × σ, γS ; s) =
Z(γ0,S ·W new

0 ,ΦS ,W
new
2 ; s)

G(χ−1
2 )

∏
`∈S L(π` × σ`, s)

,

and

ZS(π × σ, γS) = ZS(π × σ, γS ; 1 +
t

2
),

where t = r2− r1− 2 + ` as usual and G(χ−1
2 ) is the Gauss sum of the character χ2. Note that for any given

π and σ, one can choose γS such that ZS(π × σ, γS ; s) 6= 0 (this follows from the definition of the L-factor
as a GCD of local zeta-integrals).

5.5. Choosing the global data. The global Whittaker transform, given by integrating automorphic forms
over the compact quotient N(Q)\N(A), where N is the upper-triangular unipotent subgroup of GSp4, gives
a canonical isomorphism

π ∼=W(π) ∼= ⊗′vW(πv).

For all finite places v, the space W(πv) has a normalised new-vector wnew
v . Hence, given wp ∈ W(πp), we

can consider the global Whittaker function

w∞ · wp ·
∏

v/∈{p,∞}

γvw
new
v ,

where γv is an arbitrary element of GSp4(Qv) which is the identity if v is unramified, and w∞ is the standard
Whittaker function at ∞. The theory for the σi is analogous, with the standard Whittaker function being
the complex exponential.

5.6. Interpolation property. We choose a Q̄-basis ξ of the new subspace of H1(π), where H1(π) is the
copy of πf appearing in the degree 1 coherent cohomology of the Siegel Shimura variety. Analogously, we also
choose a Q̄-basis η of the new subspace of H1(σ). Comparing ξ ⊗ η with the standard Whittaker function
defines a period Ω∞(π, σ) ∈ C×.

Definition 5.6. Given non-zero ξ ∈ S1(π, L) and η ∈ S1(σ, L), we define periods Ωp(π, σ) ∈ L× and
Ω∞(π, σ) ∈ C× as in [LPSZ21, §6.8]. (These periods do depend on the choices of ξ and η, but we drop that
dependence from the notation).

In the following result we establish the interpolation property for the p-adic L-function; observe that the
algebraicity of the right hand side was the main result of [LR23].

Theorem 5.7. The p-adic L-function Limp
p,γS (π×σ) has the following interpolation property: if (P,Q) is nice

critical, then

Limp
p,γS (π × σ)(P,Q)

Ωp(πP , σQ)
= ZS(πP × σQ, γS) · E(D)(πP × σQ) · G(χ−1

2 )Λ(πP × σQ, s)
Ω∞(πP , σQ)

,

where Λ(πP × σQ, s) is the completed (complex) L-function.
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Proof. By construction, we have

Limp
p,γS (π × σ)(P,Q) = G(χ−1

2 )〈ι̂∗(γ0,S · ξP ), EΦ(p)

(0, t− 1)� ηQ〉.

Along the region given by `− t = r1 − r2 + 2, this expands as the product of G(χ−1
2 )Λ(πP × σQ, t2 ) and a

product of normalised local zeta-integrals. The local zeta-integral at p has been evaluated in [LR23, §7] and
gives the desired Euler factor. The product of zeta-integrals at the bad primes is by definition G(χ−1

2 )ZS(...).
�

Remark 5.8. Taking into account the discussions of [LR23, Rmk. 7.14], it is possible to use this same method
to get an improved p-adic L-function where the interpolation property involves a degree seven Euler factor.

Further, following the recent works announced by Boxer and Pilloni it should be possible to extend the
previous construction to a p-adic L-function in all four variables. �

6. A conjectural reciprocity law

Along this section we assume that π is both Klingen and Siegel ordinary, and that σ is Borel ordinary.
This is done just with the purpose of simplifying notations; similar conjectures can be formulated in the
more general strictly-small-slope setting, but one needs to use the theory of (ϕ,Γ)-modules over the Robba
ring (rather than actual subrepresentations of Galois representations).

6.1. Ordinary filtrations at p. Associated with the family π we have a family of Galois representations
V (π), which is a rank 4 O(U)-module with an action of Gal(Q/Q), unramified outside pN0 and with a
prescribed trace for Frob−1

` , when ` - pN0. The Galois representation V (π) has a decreasing filtration by

O(U)-submodules stable under Gal(Qp/Qp). Borrowing the notations from [LZ21, §11], we write F iV (π)
for the codimension i subspace, and similarly for its dual V (π)∗. Similarly, there is a 2-step filtration for
V (σ).

Definition 6.1. We set

V∗ = V (π)∗ ⊗ V (σ)(−1− r1);

and we let

F (D)V (π × σ)∗ = (F1V (π)∗ ⊗F1V (σ)∗) + (F3V (π)∗ ⊗ V (σ)∗)

and

F (E)V (π × σ)∗ = (F1V (π)∗ ⊗F1V (σ)∗) + (F2V (π)∗ ⊗ V (σ)∗).

For a nice weight (P,Q) we write V∗P,Q for the specialization of V∗ at (P,Q), so V∗P,Q = V (πP )∗ ⊗
V (σQ)∗(−1− r1) if P = (r1, r2).

In particular, F (E) has rank 5, F (D) has rank 4, and the quotient Gr(e/d) is isomorphic to

Gr(E/D) ∼= (Gr2 V (π)∗)⊗ (Gr0 V (σ)∗)(−1− r1).

6.2. p-adic periods and p-adic Eichler–Shimura isomorphisms. The representations Gr2 V (π)(−1−
r2) and Gr0 V (σ)(1− `̀̀) are unramified, and hence crystalline as O(U) (resp. O(U ′))-linear representations.

Since Dcris(Qp(1)) is canonically Qp, we can therefore define Dcris(Gr(e/d) V∗) to be an alias for the rank 1
O(U × U ′)-module

Dcris(Gr2 V (π)∗(−1− r2))⊗̂Dcris(Gr0 V (σ)∗(1− `̀̀)).
We can then define a Perrin-Riou big logarithm for Gr(e/d) V∗, which is a morphism of O(U × U ′)-modules

LPR : H1(Qp,Gr(e/d) V∗) −→ Dcris(Gr(e/d) V∗).
For nice geometric weights P , this specialises to the Bloch–Kato logarithm map, up to an Euler factor; and
for nice critical weights is specialises to the Bloch–Kato dual exponential.

Let P be a nice weight. There is an Eichler–Shimura isomorphism

ES2
πP

: S2(πP , L) ∼= Grr2+1
Hdg Dcris(V (πP )) ∼= Dcris(Gr1(V (πP ))).

Similarly, for GL2 we have an isomorphism

ES1
σQ

: S1(σQ, L) ∼= Dcris(Gr0 V (σQ)).
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In this case, the existence of a comparison in families is known after Kings–Loeffler–Zerbes [KLZ17], that is,
there exists an isomorphism of O(U ′)-modules

ES0
σ : S0(σ) ∼= Dcris(Gr1 V (σ))

interpolating the isomorphism ES1
σQ

for varying Q, where S1(σ) is the O(U ′)-module spanned by η.

6.3. Euler system classes. Suppose that the character χ0χ2 is non-trivial. Then, by the results of [HJS20],
associated to the data γS , we have a family of cohomology classes

zm(π × σ, γS) ∈ H1(Q(µm),V∗),
for all square-free integers coprime to some finite set T containing both p and the ramified primes. The
image of zm(π × σ, γS) under localisation at p lands in the image of the injective map from the cohomology
of F (E)V∗ and we can therefore make sense of

LPR(zm(π × σ), γS) ∈ Dcris(Gr(e/f) V∗).
In this setting, we expect the following result.

Conjecture 6.2. Under the running assumptions, the equality〈
LPR(z1(π × σ, γS))(P,Q),ES1

πP
(ξP )⊗ ES1

σQ
(ηQ)

〉
= Lp,γS (π × σ)(P,Q)

holds for all (P,Q) in the geometric range.

The main difficulty for proving the theorem following an analogous strategy to the case of region (F ) is
the lack of semistable models for the different Shimura varieties involved in this picture (Siegel level). We
hope that a better understanding of higher Coleman theory following the new results of Boxer and Pilloni
could lead to a proof of the previous conjecture.
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